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Introduction
The two-grids method is non intrusive

Introduction
The two-grids method is non intrusive

Industrial context → black box solver (BB)

Non intrusive reduced basis method useful for:
Optimization parameters fitting
High fidelity real-time simulations

Goal: Solve for several parameters the same parameter
dependent problem and reduce the computational costs

Several methods:
Finite Element method
Extension to Finite Volume method
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A model problemA model problem

{
− div(A(µ)∇u) = f in Ω, (1a)
u = 0 on ∂Ω, (1b)

u(x;µ): Unknowns (uh on the fine mesh Th, uH on the coarse
mesh TH).
µ ∈ R: Variable parameter

f ∈ L2(Ω),
A : Ω× R → Md(R) is measurable, bounded, uniformly elliptic,
and A(x) is symmetric for a.e. x ∈ Ω.
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Scheme NIRB OFFLINE/ONLINEScheme NIRB OFFLINE/ONLINE

snapshots: {uh(µ1), . . . , uh(µN)}

Fine mesh Th

OFFLINE

coarse mesh TH

basis: (Φh
i )i=1,...,N

uH(µ)

ONLINE

uN
hH(µ): NIRB approximation

Solver BB

Solver BB

" Parameters
{µ1, . . . , µN}

must be
well chosen!
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How to choose the parametersHow to choose the parameters

Greedy algorithm
Observing the decay of eigenvalues with an SVD

Kolmogorov n-width must be small 1 Mh = {uh(µ) ∈ Vh| µ ∈ P} is a subset of a Banach
space Vh.
The Kolmogorov n-width of Mh in Vh is

dn(Mh,Vh) = inf
Yn

{ sup
x∈Mh

( inf
y∈Yn

∥x − y∥Vh
);Yn is a n-dimensional subspace of Vh}. (2)

b

b b

Mh

X N
h

Vh

uh(µ1)

uh(µ2)

1A. Buffa, Y. Maday, A.T. Patera, C. Prudhomme, and G. Turinici, A Priori convergence of
the greedy algorithm for the parameterized reduced basis.2010

5 / 27



NIRB

Elise Grosjean

NIRB method
Offline

Online

Extensions

Results with FE solver

Finite volume solver
Error estimate

EDF applications

Conclusions and
perpectives

Elise Grosjean

NIRB method
Offline

Online

Extensions

Results with FE solver

Finite volume solver
Error estimate

EDF applications

Conclusions and
perpectives

Projection Orthogonal Decomposition (POD)Projection Orthogonal Decomposition (POD)

Objective: Choose a basis which represents the most
likely realizations!

Observing the decay of eigenvalues with an SVD.

max
Φ∈L2

|u,Φ|2

∥Φ∥2 =
|u,Ψ|2

∥Ψ∥2 . (3)

This problem is equivalent to finding the biggest eigenvalue to the
following equation

CΨ = λΨ, (4)

where Ci,j =
∫
Ω ui · uj .
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NIRB algorithm: Offline stageNIRB algorithm: Offline stage

1 Compute the approximations {uh(µi)}i∈{1,...N}.

2 Two cases can be considered:
A greedy algorithm with a Gram-Schmidt procedure → L2

orthonormalization.
(optional) Complemented by the following problem:
Find Φ ∈ X N

h , and λ ∈ R such that

∀v ∈ X N
h ,

∫
Ω

∇Φ · ∇v = λ

∫
Ω

Φ · v , (5)

→ L2(Ω) and H1(Ω) orthogonalization.

X N
h = Vect{uh(µ1), . . . , uh(µN)}
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NIRB algorithm: Online stageNIRB algorithm: Online stage

3 Solve problem on the coarse mesh TH where H >> h with µ.

4 αH
i =

∫
Ω Ih(uH(µ)) · Φh

i and output: uN
Hh =

N∑
i=1

αH
i Φ

h
i .

5 (Optional) Post-Treatment (PT)

∥∥∥∥∥u(x ;µ)−
N∑

k=1
(uH(µ), ϕ

h
k) ϕ

h
k

∥∥∥∥∥
H1

≤
T1︷︸︸︷
ϵ + C1h︸︷︷︸

T2

+

T3︷ ︸︸ ︷
C2H2 ∼ Ch

if H2 ∼ h
where C1,C2 are constants independent of h and H.2

2Rachida Chakir, Yvon Maday. A two-grid finite-element/reduced basis scheme for the
approximation of the solution of parameter dependent PDE. 2009
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Some recalls for T2 and T3 with FEMSome recalls for T2 and T3 with FEM

Cea’s Lemma
∥u − uh∥ H1 ≤ C inf

vh∈Vh

∥u − vh∥ ≤ Ch∥u∥H2

Aubin-Nitsche’s Lemma
∥u − uh∥ L2 ≤ Ch∥u − uh∥H1 .
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What if we only have access to the nodes?What if we only have access to the nodes?

Consider P1 finite elements
a(uh, vh) = (f , vh).

Solution uh ũh = Ĩh(uh)

∥∥u − ũh
∥∥

H1 ≤ Ch.3

3Susanne C. Brenner, L. Ridgway Scott. The Mathematical Theory of Finite Element
Methods, 2008.
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Post-TreatmentPost-Treatment

The rectification method
(ui

H ,Φj) → (ui
h,Φj)

(Ai)k = (uH(µk),Φi)L2,∀k = 1, · · · ,Ntrain (6)
(Bi)k = (uh(µk),Φi)L2, ∀k = 1, · · · ,Ntrain (7)

D = (A1, · · · ,AN) ∈ RNtrain×N (8)
(9)

Ti = (DT D + λIN)−1DT Bi , ∀i = 1, · · · ,N. (10)

uN
Hh(µ) =

N∑
i,j=1

Tij(uH(µ),Φj)Φi (11)
11 / 27
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Results with FEResults with FE

Figure: Error H1
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Polytopal mesh for FVPolytopal mesh for FV

Goal:
Extend FE
estimate

to FV solver

XD,0 = {v = ((vK )K∈M, (vσ)σ∈F ) :

vK ∈ R, vσ ∈ R,
vσ = 0 if σ ∈ Fext}.

+xK

σ

K

DK ,σ

nK ,σ

Figure: A cell K of a polytopal mesh 3

3J. Droniou, R. Eymard, T. Gallouët, C. Guichard, R. Herbin. The gradient discretisation
method. 2018

13 / 27



NIRB

Elise Grosjean

NIRB method
Offline

Online

Extensions

Results with FE solver

Finite volume solver
Error estimate

EDF applications

Conclusions and
perpectives

Elise Grosjean

NIRB method
Offline

Online

Extensions

Results with FE solver

Finite volume solver
Error estimate

EDF applications

Conclusions and
perpectives

Hybrid Mimetic Mixed (HMM) schemeHybrid Mimetic Mixed (HMM) scheme

Stokes Formula:

−
∑
σ∈FK

∫
σ

∇u(x) · nK ,σ dγ(x) =
∫

K
f (x)dx. (12)

Flux balance: ∑
σ∈FK

FK ,σ =

∫
K

f (x) d(x). (13)

Flux conservativity:
FK ,σ + FL,σ = 0. (14)
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Gradient Discret schemeGradient Discret scheme

{
− div(A(µ)∇u) = f in Ω, (15a)
u = 0 on ∂Ω, (15b)

Variational Gradient Scheme 4

Find uD ∈ XD,0 such that, ∀vD ∈ XD,0,∫
Ω

A(µ)∇DuD · ∇DvD =

∫
Ω

f ΠDvD. (16)

4J. Droniou, R. Eymard, T. Gallouët, C. Guichard, R. Herbin. The gradient discretisation
method. 2018
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Hybrid Mimetic Mixed (HMM) scheme:
Operators

Hybrid Mimetic Mixed (HMM) scheme: Operators

1 ΠD : XD,0 → L2(Ω) :

∀v ∈ XD,0, ∀K ∈ M, ΠDv(x) = vK on K .

2 ∇D : XD,0 → L2(Ω)d :

∀v ∈ XD,0,∀K ∈ M,∀σ ∈ F ,

∇Dv(x) = ∇K v + S on DK ,σ, where S ensures stability and

∇K v = 1
|K |

∑
σ∈FK

|σ|vσnK ,σ.

A norm on XD,0: ∥·∥D =∥∇D·∥L2(Ω)2.
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Error estimateError estimate

H1 error estimate
Goal:

∥∥∥u(µ)− uN
Hh(µ)

∥∥∥
D
≤ Ch∥∥∥u(µ)− uN

Hh(µ)
∥∥∥
D
≤ T1 + T2 + T3

T1 =
∥∥∥u(µ)− Πh

Duh(µ)
∥∥∥
D

,

T2 =
∥∥∥Πh

Duh(µ)− uN
hh(µ)

∥∥∥
D

,

T3 =
∥∥∥uN

hh(µ)− uN
Hh(µ)

∥∥∥
D

,

where uN
hh(µ) =

N∑
i=1

αh
i (µ)Π

h
DΦ

h
i .
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Error estimateError estimate

1 From classical result on FV :

T1 =
∥∥∥u(µ)− Πh

Duh(µ)
∥∥∥
D
≤ C1h. (17)

2 Result from Kolmogorov n-width 5:

T2 =

∥∥∥∥∥Πh
Duh(µ)−

N∑
i=1

αh
i (µ)Π

h
DΦ

h
i

∥∥∥∥∥
D

≤ ϵ.

3 From a super-convergence property 6,

|
∫
Ω

(u(µ)− ΠH
DuH(µ)) · Πh

DΦ
h
i | ≤ C2H2, ∀Φh

i ∈ X N
h , (18)

We deduce T3 ≤ C2H2 .

5Rachida Chakir, Yvon Maday. A two-grid finite-element/reduced basis scheme for the approximation of the solution of parameter
dependent PDE. 2009

6J. Droniou, N. Nataraj, Improved L2 estimate for gradient schemes, and super-convergence of HMM and TPFA finite volume
methods, 2016.18 / 27
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Some details on item 3Some details on item 3

Super-convergence

|
∫
Ω

(u(µ)− ΠH
DuH(µ)) · Πh

DΦ
h
i | ≤ C2H2, for all Φh

i ∈ X N
h . (19)

ΠH
0 : C(Ω) → L∞(Ω):

ΠH
0 Φ = Φ(xK ), on K ∀K ∈ MH ,∀Φ ∈ C(Ω). (20)

ΠH
1 : C(Ω) → R (affine projection ΠH

1 (u) = Q2u(x, µ), see Taylor polynomial of
order 2 of u(µ) averaged over BK ):

Q2u(x, µ) =
∫

B
[u(xK;µ) +∇u(y;µ)(x − xK )]Ψ(y) dy. (21)

such that ΠH
1 (u(xK , µ))|K = u(xK )
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Some details on item 3Some details on item 3

|
∫
Ω

(u(µ)− ΠH
DuH(µ)) · Πh

DΦ
h
i | ≤ T4 + T5 + T6, (22)

where
T4 = |(u −Π1u,Φ)|,T5 = |(Π1u −Π0u,Φ)|,T6 = |(Π0u −ΠDuH ,Φ)|.
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Some details on item 3Some details on item 3

Bramble-Hilbert’s Lemma:∥∥∥u(µ)− ΠH
1 (u(µ))

∥∥∥
L2(Ω)

≤ C̃2H2
∥∥u(µ)

∥∥
H2(Ω)

, (23)

∥∥∥u(µ)− ΠH
0 u(µ)

∥∥∥
L2(Ω)

≤ C̃1H
∥∥u(µ)

∥∥
H2(Ω)

. (24)

Average property:∫
K
ΠH

1 (u(µ))(x)·ζ(x)dx =

∫
K
ΠH

0 u(x)·ζ(x)dx,∀K ∈ MH ,∀ζ such that ζ|K ∈ P0.

(25)∥∥∥ΠDuH(µ)− ΠH
0 (u(µ))

∥∥∥
L2(Ω)

≤ CH2. (26)

21 / 27



NIRB

Elise Grosjean

NIRB method
Offline

Online

Extensions

Results with FE solver

Finite volume solver
Error estimate

EDF applications

Conclusions and
perpectives

Elise Grosjean

NIRB method
Offline

Online

Extensions

Results with FE solver

Finite volume solver
Error estimate

EDF applications

Conclusions and
perpectives

One application: 2D Wind turbineOne application: 2D Wind turbine

uref

Wind turbine

0−20 D
Figure 1: Mesh for one wind turbine

2D mesh with 6500 cells, thinner
around the wind turbine.

Characteristic length D: 126m,
corresponds to the rotor diameter.

Hub height: 95.6m.

Wind turbine rotor is represented in the
movement equation by adding a source
term.

Boundary Condition: uref at the inlet.

Initial Condition: uref set in the domain.
uref : Variable parameter
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Results for the applicationResults for the application

Figure 2: Decrease of the eigenvalues of
the POD

Figure 3: H1 errors of the velocity on the
interest area

For k = 3, I(k) =
∑k

j=1 λj∑N
j=1 λj

≃ 1.

The error of NIRB increases slightly after N = 15 (Figure 3).

The relative error of
∥∥∥uh/10 − uN

Hh

∥∥∥
H1

is between the one given by
∥∥∥uh/10 − uh

∥∥∥
H1

and the

one with uH (Figure 3).
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Wind turbines in 3DWind turbines in 3D

Wind canal with less opacity One wind turbine mesh (N ∼ 500 000)
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Results for 3D applicationResults for 3D application

Eigenvalues Relative L2 error
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Conclusion and Perspectives:Conclusion and Perspectives:

1 Extend the error estimates from FE to FV solver and retrieve
the classical errors.

2 Numerical results with FV solver in accordance with
expectations in 2D and 3D.

Perspectives:
Extend 3D wind turbines to offshore wind farm,
Use different applications,
Generalize to other FV schemes.
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