Coupled analysis of active biological processes for meniscus tissue regeneration

SPP 2311 Workshop, 11-13 Sep. 2023, Magdeburg

Graciosa Teixeira¹, Nishith Mohan³, Elise Grosjean³, Michael Doser², Alexander Ott², Carsten Linti², Martin Dauner², Götz Gresser², Andreas Seitz¹, Christina Surulescu³, Bernd Simeon³

R

¹ Institut für Unfallchirurgische Forschung und Biomechanik (UFB), Universität Ulm
² Deutsche Institute für Textil- und Faserforschung Denkendorf (DITF), Denkendorf
³ RPTU Kaiserslautern-Landau, Kaiserslautern

³ Introduction

Motivation

- Meniscectomy leads to premature osteoarthritis of the knee joint
- New paradigm of healing by repair and regeneration of meniscus tissue
- Need for promising substitute
- Replacement tissue for cartilage is successfully generated based on cell cultured scaffolds

4 | Introduction

Objectives

Experimental study of cell-seeded nonwoven scaffolds in an array of perfusion chambers

R

Rheinland-Pfälzische Technische Universität

> DEUTSCHE INSTITUTE FÜ TEXTIL+FASERFORSCHUN

aiserslautern

- ➤ Identification of crucial stimuli for chondrocytes and stem cells (ADSCs) → cell proliferation, differentiation, and migration
- Deduction and study of multiscale models
- Development of efficient numerical methods for coupling of models on several scales and for parameter identification
- Set up of a feedback loop of *in silico* and *in vitro* results to improve modeling and experimental design

⁵ | Materials & Methods

Scaffold characterization

Polyethylene terephthalate (PET) needle felts (nonwoven) characterized by:

- Scanning electron microscopy (SEM)
- Micro computed tomography (µCT)
- Indentation mapping
- Multi-step confined compression relaxation test
- Unconfined compression creep test

267-292 g, 25x30 mm²

Characterization of the biomechanical performance of the scaffolds

I: Indentation mapping (dry vs. hydrated in 10 mL PBS for 2h)

- N = 6 samples, 6 measuring points/sample
- Indentation amplitude: 15 % h0
- Relaxation time: 10 s
- Spherical indenter: $\emptyset = 5 \text{ mm}$
- → Maximum force (Fmax)

II: Multi-step confined compression relaxation test (Mow et al., 1980)

- N = 6 cylindrical samples Ø 5mm
- 3 consecutive strain levels ($\epsilon = 0.1, 0.15, 0.2$)
- Relaxation time: 30 minutes
- → Equilibrium Modulus (E_{eq})
- \rightarrow Permeability of the fiber network (k)

II: Unconfined compression creep test

- 2 N maximum force
- \rightarrow Stress-strain diagram to calculate the creep rate

7 | Results

SEM and μCT of PET nonwoven fabrics

> Textile volume/total volume = $14.85 \pm 0.52 \%$

Í. y

- Porosity = 85.15 ± 0.52 %
- > Structure model index (SMI) = 2.35 \pm 0.04 %

(SMI = 0 for plates, 3 for rods and 4 for solid spheres)

⁸ | Results

Range (mm)	Mid-range (mm)	Volume (mm ³)	Percentage of volume in range (%)
0.00398 - <0.01194	0.00796	19.1	23.3
0.01194 - <0.01989	0.01591	44.8	54.8
0.01989 - <0.02785	0.02387	17.2	21.0
0.02785 - <0.03581	0.03183	0.8	0.9

R

Rheinland-Pfälzische Technische Universität

DEUTSCHE INSTITUTE FÜR TEXTIL+FASERFORSCHUNG

Kaiserslautern

Landau

⁹ | Results

Indentation mapping

DEUTSCHE INSTITUTE FÜR TEXTIL+FASERFORSCHUNG

R

Ρ

Rheinland-Pfälzische Technische Universität

Kaiserslautern

Landau

¹⁰ | Results

Confined compression

¹¹ | Materials & Methods

Seeding of articular chondrocytes

12 | Results

AC gene expression

- Upregulation of chondrogenic markers from d14 to d21 (except SOX9 in 1x10⁶ ACs)
- Overall, low expression of the investigated markers

¹³ | Results

Cell adhesion and proliferation

¹⁴ | Results

R TU Rheinland-Pfälzische Technische Universität Kaiserslautern Landau

Cell adhesion and proliferation

Scanning electron microscopy (SEM) 1x10⁶ ACs day 21

1e6 21d Diff. 10Min US, 3h OS

DITF_4732 2022.11.30 1e6 21d Diff. 10Min US, 3h OS

DITF_4740 2022.11.30 1e6 21d Diff. 10Min OS, 3h US

x200 500 um

¹⁵ | Results

Cell adhesion and proliferation

Confocal microscopy, $1x10^6$ ACs, day 21, sections: $200 - 300 \ \mu m$

¹⁶ | Summary

Experimental study

- Successful seeding of scaffolds with ACs
- > Adequate culture conditions for cell adhesion and proliferation, but absence of matrix production

Open research questions:

- > Differentiation of stem cells before seeding or after seeding inside the scaffolds
- Coating of scaffolds with hyaluranic acid
- Relevant end points
- Differentiation/matrix production under perfusion stress

¹⁷ | Summary

Perfusion stress chamber

Development and production of a perfusion chamber for long-term experiments (up to 4 weeks)

R

Rheinland-Pfälzische Technische Universität

DEUTSCHE INSTITUTE FÜR TEXTIL+FASERFORSCHUNG

Kaiserslautern

Landau

Work flow

A multiscale approach

Nishith Mohan <u>A cell-based mathematical model for meniscus tissue regeneration</u>

Modeling cell migration and (de) differentiation in a scaffold

Modeling cell migration and (de) differentiation in a scaffold

$$\begin{aligned} \partial_t c_1 - \nabla \nabla &: (\mathbb{D}_1 c_1) + \nabla \cdot \left(\frac{k^- \lambda_{11}}{B(h,k)^2 (B(h,k) + \lambda_{10})} \mathbb{D}_1 \nabla B(h,k) c_1 \right) = \\ &- \alpha_1(k,S) c_1 + \alpha_2(k,S) \frac{\omega_1}{\omega_2} c_2 + \beta c_1 \left(1 - c_1 - c_2 \right), \\ &\partial_t c_2 - \nabla \nabla : (\mathbb{D}_2 c_2) = \alpha_1(k,S) \frac{\omega_2}{\omega_1} c_1 - \alpha_2(k,S) c_2. \end{aligned}$$

Macroscopic equations for ADSCs and chondrocytes

 $\mathbb{D}_i, i = \{1, 2\}$ - encodes the orientation distribution of scaffold fibers

 $\nabla \nabla : (\mathbb{D}_i c_i) = \nabla \cdot (\mathbb{D}_i \nabla c_i + c_i \nabla \cdot \mathbb{D}), \quad i = \{1, 2\}$ $\mathbb{D}_1(x) = \frac{1}{\lambda_{10}} \int_{V_1} v \otimes v \frac{q(x, \hat{v})}{\omega_1} dv, \text{ and}$ $\mathbb{D}_2(x) = \frac{1}{\lambda_2} \int_{V_2} v \otimes v \frac{q(x, \hat{v})}{\omega_2} dv = \frac{\lambda_{10}}{\lambda_2} \left(\frac{\omega_2}{\omega_1}\right)^{\frac{2}{n-1}} \mathbb{D}_1(x).$

Complete model

Nishith Mohan <u>A cell-based mathematical model for meniscus tissue regeneration</u>

A simplified macroscopic model for meniscus tissue regeneration

$$\begin{aligned} \partial_t c_1 &= a_1 \Delta c_1 - \nabla \cdot (b_1 c_1 \nabla h) - \nabla \cdot (b_2 c_1 \nabla k) \\ &- \alpha_1(k) c_1 + \alpha_2(k) c_2 + \beta c_1 (1 - c_1 - c_2 - k), \\ \partial_t c_2 &= \Delta c_2 + \alpha_1(k) c_1 - \alpha_2(k) c_2, \\ \partial_t h &= -\gamma_1 h c_2 + \frac{c_2}{1 + c_2}, \\ \partial_t k &= -\delta_1 c_1 k + c_2, \end{aligned}$$
subject to boundary conditions
$$- \frac{\partial c_1}{\partial \nu} + b_1 c_1 \frac{\partial h}{\partial \nu} + b_2 c_1 \frac{\partial k}{\partial \nu} = \frac{\partial c_2}{\partial \nu} = 0 \quad \text{on} \quad \partial \Omega \times (0, T), \end{aligned}$$
and, initial conditions
$$c_1(x, 0) = c_{10}(x) > 0, \quad c_2(x, 0) = c_{20}(x) > 0 \\ h(x, 0) &= h_0(x) > 0, k(x, 0) = k_0(x) > 0, \quad x \in \Omega, \end{aligned}$$

- Global existence of weak solutions for n = 3.
- Turing instability with respect to haptotactic sensitivity b_1 .

Outlook

- Bio-reactor experiments to include mechanical effects on (de) differentiation.
- · More careful modeling of mechanical and tactic effects on microscale

• Including detailed information about scaffold, possible effect of porosity and stiffness.

Simulations of tissue regeneration

Simulations of tissue regeneration

Sensitivity analysis

Sensitivity analysis calculates the rates of change in the output variables of a system which result from small perturbations in the problem parameters.

$$\mathscr{P}: \boldsymbol{\mu} \to \boldsymbol{U}(\boldsymbol{\mu}), \ \boldsymbol{\mu} = (\mu_1, \dots, \mu_n)$$

Sensitivities: $\frac{\partial u}{\partial \mu_j}(\mathbf{x}; \boldsymbol{\mu}^s), j = 1, ..., n.$

3/6

Parameters identification

Identification of *a*, *b*, α , β with Gauss-Newton algorithm (Tikhonov regularization) on $\Omega = [0, 1] \times [0, 1]$, T = 1

- ♦ Identification successful provided initial guess not too far
- ♦ Need experimental values

4/6

NIRB on the sensitivity equations

How do we reduce the time simulations of the sensitivity equations?

Grosjean E., and Simeon, B. (2023). The non-intrusive reduced basis two-grid method applied to sensitivity analysis, Preprint.

Conclusion & perspectives

Conclusion

- ♦ Forward simulations^{1 2}
- ♦ Loosely coupling between the two models²
- ♦ Sensitivity analysis of two models: Cells density and bioreactor models (2nd talk)
- ♦ New methodology for the sensitivity to reduce simulations costs³

Perspectives

- ♦ Models simplification
- ♦ Validation with measures (1rst talk)
- ♦ Enhancement of our NIRB method^{4 5}
- ♦ Other sensitivity evaluations (e.g. Sobol indices)

¹ Simeon, B., Die Macht der Computermodelle: Quellen der Erkenntnis oder digitale Orakel? (2023)
²Grosjean E., Simeon, B. The non-intrusive reduced basis two-grid method applied to sensitivity analysis, preprint, 2023
³Grosjean, E. Simeon, B., Surulescu. C. A mathematical model for meniscus cartilage regeneration, preprint, 2023
⁴Maday, Y., Stamm, B. Locally adaptive greedy approximations for anisotropic parameter reduced basis spaces (2013)
⁵Barnett, J. L., Farhat, C., Maday, Y. Mitigating the Kolmogorov Barrier for the Reduction of Aerodynamic Models using Neural-Network-Augmented Reduced-Order Models (2023)

6/6

Thank you for your attention!

