

Non Intrusive Reduced Basis method (NIRB) The Two-grids method

Elise Grosjean¹ In collaboration with: Yvon Maday¹, Nora Aïssiouene¹

> ¹Laboratoire Jacques-Louis Lions Sorbonne Université

> > December 3, 2020 CANUM2020

Introduction The two-grids method is non intrusive

NIRB

Elise Grosjean

NIRB method

Offline Online Results with FE

Finite volume solver Error estimate Results with FV solver

Applications EDF applications Truncated domain

Conclusions and perspectives

Industrial context \rightarrow black box solver (BB)

Non intrusive reduced basis method useful for:Optimization parameters fittingHigh fidelity real-time simulations

Goal: Solve for several parameters the same parameter lependent problem and reduce the computational costs

Several methods: Finite Element method

Extension to Finite Volume method

Two examples of applications

NIRB

Elise Grosiean

NIRR method

Finite volume solver

Applications

Conclusions and perspectives

Offshore wind Farm

A way to reduce computational costs of an offshore wind farm to optimize the position of the wind turbines

Spatial Variability

What if we could consider a non physically acceptable truncated domain?

A model problem

NIRB

Elise Grosiean

NIRB method

- Finite volume solver
- Applications
- Conclusions and perspectives

- \blacksquare $u(\mathbf{x}; \mu)$: Unknowns (u_h on the fine mesh \mathcal{T}_h , u_H on the coarse mesh \mathcal{T}_{H}).
- \blacksquare $\mu \in S$: Variable parameter,

 $f \in L^2(\Omega)$, $A: S \times \Omega \to \mathcal{M}_d(\mathbb{R})$ is measurable, bounded, uniformly elliptic, and $A(\mathbf{x})$ is symmetric for a.e. $\mathbf{x} \in \Omega$.

NIRB scheme OFFLINE/ONLINE

How to choose the parameters

NIRB

Greedy algorithm

Elise Grosjean

NIRB method

Offline Online Results with FE

Finite volume solver Error estimate Results with FV solver

Applications EDF applications Truncated domain

Conclusions and perspectives

■ Observing the decay of eigenvalues with an SVD Kolmogorov n-width must be small ¹ $M_h = \{u_h(\mu) \in V_h | \mu \in P\}$ is a subset of a Banach space V_h . The Kolmogorov n-width of M_h in V_h is

 $d_n(\mathcal{M}_h, V_h) = \inf_{\substack{Y_n \\ x \in \mathcal{M}_h}} \{ \sup_{y \in Y_n} (\inf_{y \in Y_n} ||x - y||_{V_h}); Y_n \text{ is a n-dimensional subspace of } V_h \}.$ (2)

¹A. Buffa, Y. Maday, A.T. Patera, C. Prudhomme, and G. Turinici, *A Priori convergence of the greedy algorithm for the parameterized reduced basis.*2010

NIRB Offline stage

NIRB

Elise Grosjean

NIRB method

Offline Online Besults with FE

Finite volume solver Error estimate Results with FV solver

Applications EDF applications Truncated domain

Conclusions and perspectives

1 Compute the approximations $\{u_h(\mu_i)\}_{i=1,...,N}$.

2 We consider:

- A greedy algorithm with a Gram-Schmidt procedure
 - $\rightarrow L^2$ orthonormalization.
- Complemented by the following problem: Find $\Phi^h \in X_h^N$, and $\lambda \in \mathbb{R}$ such that

$$orall oldsymbol{
u} \in oldsymbol{X}_h^{oldsymbol{N}}, \int_\Omega
abla \Phi^h \cdot
abla oldsymbol{
u} = \lambda \int_\Omega \Phi^h \cdot oldsymbol{
u},$$

(3)

 $\rightarrow L^2(\Omega)$ and $H^1(\Omega)$ orthogonalization. $X_h^N = Vect\{\Phi_1^h, \dots, \Phi_N^h\}$

NIRB Online stage

NIRB

Elise Grosiean

- NIRB method Online
- Finite volume solver
- Applications
- Conclusions and

- **3** Solve problem on the coarse mesh \mathcal{T}_H where H >> h with μ .
- $a \alpha_i^H = \int_{\Omega} I^h(u_H(\mu)) \cdot \Phi_i^h \text{ and output: } u_{Hh}^N = \sum_{i=1}^N \alpha_i^H \Phi_i^h.$
- G (Optional) Post-Treatment (PT)

²Rachida Chakir, Yvon Madav, A two-arid finite-element/reduced basis scheme for the approximation of the solution of parameter dependent PDE. 2009

Results with FE solver

Polytopal mesh for FV

³J. Droniou, R. Eymard, T. Gallouët, C. Guichard, R. Herbin. *The gradient discretisation method.* 2018

10 / 22

Gradient Discret scheme

NIRB

Elise Grosjean

NIRB method Offline Online Results with FE solver

Finite volume solver

Error estimate Results with FV solver

Applications EDF applications Truncated domain

Conclusions and perspectives

$$\begin{aligned} & \int -\operatorname{div}(\boldsymbol{A}(\boldsymbol{\mu})\nabla\boldsymbol{u}) = f \text{ in } \Omega, \\ & \boldsymbol{u} = \mathbf{0} \text{ on } \partial\Omega. \end{aligned} \tag{4a}$$

(5)

Variational Gradient Scheme ⁴ Find $u_{\mathcal{D}} \in X_{\mathcal{D},0}$ such that, $\forall v_{\mathcal{D}} \in X_{\mathcal{D},0}$, $\int_{\Omega} A(\mu) \nabla_{\mathcal{D}} u_{\mathcal{D}} \cdot \nabla_{\mathcal{D}} v_{\mathcal{D}} = \int_{\Omega} f \Pi_{\mathcal{D}} v_{\mathcal{D}}.$

⁴J. Droniou, R. Eymard, T. Gallouët, C. Guichard, R. Herbin. *The gradient discretisation method.* 2018

Error estimate on FV scheme

NIRB

Elise Grosjean

- NIRB method Offline Online Results with FE solver
- Finite volume solver Error estimate Results with FV solver

Applications EDF applications Truncated domain

Conclusions and perspectives

 $\Pi_{\mathcal{D}} : X_{\mathcal{D},0} \to L^{2}(\Omega) :$ $\Pi_{\mathcal{D}} V(\mathbf{X}) = V_{K} \text{ on } K.$

2 $\nabla_{\mathcal{D}} : X_{\mathcal{D},0} \to L^2(\Omega)^d$: $\nabla_{\mathcal{D}} \mathbf{v}(\mathbf{x}) = \nabla_{K} \mathbf{v} + \mathbf{S} \text{ on } D_{K,\sigma}, \text{ where } \mathbf{S} \text{ ensures stability and}$ $\nabla_{K} \mathbf{v} = \frac{1}{|K|} \sum_{\sigma \in \mathcal{F}_K} |\sigma| \mathbf{v}_{\sigma} \mathbf{n}_{K,\sigma}.$

A norm on $X_{\mathcal{D},0}$: $\|\cdot\|_{\mathcal{D}} = \|\nabla_{\mathcal{D}}\cdot\|_{L^2(\Omega)^2}$.

$\begin{aligned} & H^{1} \text{ error estimate} \\ & \text{Main result:} \left\| u(\mu) - u_{Hh}^{N}(\mu) \right\|_{\mathcal{D}} \leq Ch, \text{ if } H^{2} \sim h. \end{aligned}$

Results with FV solver

NIRB

Elise Grosjean NIRB method Results with FV solver

NIRB solution error

NIRB application: 2D Wind turbine

Figure 1: Mesh for one wind turbine

u_{ref}: Variable parameter

- 2D mesh with 6500 cells, thinner around the wind turbine.
- Characteristic length D: 126m, corresponds to the rotor diameter.
- Hub height: 95.6m.
- Wind turbine rotor is represented in the movement equation by adding a source term.
- Boundary Condition: *u*_{ref} at the inlet.
- Initial Condition: *u*_{ref} set in the domain.

Results for the application

NIRB

Elise Grosjean

- NIRB method Offline Online Results with FE solver
- Finite volume solver Error estimate Results with FV solver

Applications EDF applications Truncated domain

Conclusions and perspectives

Figure 2: Decrease of the eigenvalues of the POD

Figure 3: *H*¹ errors of the velocity on the region of interest

Wind turbines in 3D

Elise Grosjean

NIRB method Offline Online

Results with FE solver

Finite volume solve Error estimate Results with FV solver

Applications EDF applications Truncated domain

Conclusions and perspectives

Wind canal

Results for 3D application

Wind turbine ${\rm n}^{\circ}{\rm 3}$ approximation

Application on a truncated domain

NIRB

Elise Grosjean

NIRB method

Offlin

Online

Results with FE solve

Finite volume solver Error estimate Results with FV solver

Applications EDF applications Truncated domain

Conclusions and perspectives

Greedy on coarse mesh $(\Phi_i^H)_{i=1,\dots,N_1}$

Greedy on fine mesh $(\Phi_i^h)_{i=1,\cdots,N_2}$

$$(\mathbf{A}_i)_k = (\mathbf{u}_H(\mu_k), \Phi_i^H)_{L^2}, \forall k = 1, \cdots, N train,$$
(6)

 \leadsto

$$(B_i)_k = (u_h(\mu_k), \Phi_i^h)_{L^2}, \forall k = 1, \cdots, N train,$$
(7)
$$D = (A_1, \dots, A_N) \in \mathbb{R}^{N train \times N_1}$$
(8)

$$D = (A_1, \cdots, A_N) \in \mathbb{R}^{N \times 2N}, \qquad (8)$$

$$R_{i} = (D^{T}D + \lambda I_{N})^{-1}D^{T}B_{i}, \forall i = 1, \cdots, N_{2}.$$

$$u_{Hh}^{N}(\mu) = \sum_{i=1}^{N_{1}}\sum_{j=1}^{N_{2}}R_{ij}(u_{H}(\mu), \Phi_{j}^{H})\Phi_{i}^{h}.$$
(10)

Result

NIRB

Elise Grosjean

NIRB method

Offline

Online

Results with FE solver

Finite volume solver Error estimate Results with FV solver

Applications EDF applications Truncated domain

Conclusions and perspectives

size of coarse mesh = 0.14 size of fine mesh = 0.03

H1 NIRB error for Reynolds = 200: 1.0549e-05

Nirb approximation

FE solution on the coarse mesh

Conclusion and Perspectives

NIRB

Elise Grosjean

- NIRB method Offline Online Results with FE solver
- Finite volume solver Error estimate Results with FV solver
- Applications EDF applications Truncated domain

Conclusions and perspectives

- Generalization of NIRB method to FV solvers with classical error estimate.
- Numerical results with FV solver on wind turbines in accordance with expectations in 2D and 3D.
- 3 Efficient NIRB method on a truncated domain.

Perspectives

- Extend 3D wind turbines to offshore wind farm,
- Use a truncated domain on wind turbines,
- Generalize to other FV schemes,
- Development of a library of non intrusive reduced basis methods in process.

Thank you for your attention!

Elise Grosjean

elise.grosjean@upmc.fr

Post-Treatment

NIRB

Elise Grosjean

NIRB method

Offline Online

Results with FE solver

Finite volume solver Error estimate Results with FV solver

Applications EDF applications Truncated domain

Conclusions and perspectives

The rectification method $(u_{H}^{i}, \Phi_{j}) ightarrow (u_{h}^{i}, \Phi_{j})$

$$(\mathbf{A}_i)_k = (\mathbf{u}_H(\mu_k), \Phi_i^h)_{L^2}, \forall k = 1, \cdots, N train$$
 (11)

$$(B_i)_k = (u_h(\mu_k), \Phi_i^h)_{L^2}, \forall k = 1, \cdots, N train$$
(12)

$$D = (A_1, \cdots, A_N) \in \mathbb{R}^{N train \times N}$$
(13)

$$T_i = (D^T D + \lambda I_N)^{-1} D^T B_i, \ \forall i = 1, \cdots, N.$$
(14)

. .

$$u_{Hh}^{N}(\mu) = \sum_{i,j=1}^{N} T_{ij}(u_{H}(\mu), \Phi_{j}^{h})\Phi_{i}^{h}$$
(15)