

Purpose

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

Reduce the computational costs of offshore wind farms simulations with Non-Intrusive Reduced Basis methods

Introduction to the NIRB methods

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

Reduced basis methods

$$\mathcal{M} = \{ u(\mu) \in V | \ \mu \in \mathcal{G} \} \subset V.$$

• Parameter: $\mu \in \mathcal{G}$,

Solution:
$$u(\mu) \in V$$
.

Introduction to the NIRB methods

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

Reduced basis methods

V

 $\mathbf{x}N$

$$\mathcal{M} = \{ \textit{\textit{u}}(\mu) \in \textit{V} | \ \mu \in \mathcal{G} \} \subset \textit{V}.$$

Parameters µ₁,..., µ_N ∈ G,
Snapshots u(µ₁),..., u(µ_N) ∈ V_h,
X^N Reduced basis space,
Projected snapshots onto X^N.

 $u(\mu_2) \bullet u(\mu)$ > Projec Figure: Solution manifold

Elise Grosjean

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

Introduction to the NIRB methods

Reduced basis methods

¹ P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, P. Wojtaszczyk *Convergence rates for greedy algorithms in reduced basis methods.* 2011.

² A. Buffa, Y. Maday, A.T. Patera, C. Prudhomme, and G. Turinici, *A Priori convergence of the greedy algorithm for the parameterized reduced basis.* 2012.

Introduction to the NIRB methods

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

Reduced basis methods

 $\mathcal{M}_h = \{ u_h(\mu) \in V_h | \ \mu \in \mathcal{G} \} \subset V_h.$

Parameters µ₁,..., µ_N ∈ G,
Snapshots u_h(µ₁),..., u_h(µ_N) ∈ V_h,
X^N_h Reduced basis space,
Projected snapshots onto X^N_h.
Kolmogorov n-width must be small ^{1 2}

¹ P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, P. Wojtaszczyk *Convergence rates for greedy algorithms in reduced basis methods.* 2011.

² A. Buffa, Y. Maday, A.T. Patera, C. Prudhomme, and G. Turinici, *A Priori convergence of the greedy algorithm for the parameterized reduced basis.* 2012.

Introduction to the NIRB methods

JL

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

Reduced basis methods

- Optimization over parameter space
- High Fidelity (HF) real-time simulations

Non-Intrusive Reduced basis methods (NIRB)

Industrial context \rightarrow **black box solver**

Application

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

Wind farm setting

Elise Grosjean

Application

EDF wind turbines application with FV

solvers Two-grid method

Results

Application

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

reference input velocity magnitude uref

Application

J

Introduction

- EDF wind turbines application with FV solvers
- Two-grid method
- Results

- reference input velocity magnitude uref
- \blacktriangleright incidence angle θ

Figure: Wind turbine parameter

Elise Grosjean

Actuator disc ³ and $k - \varepsilon$ RANS equations

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

Figure: Rotor

Figure: Wind farm with actuator discs, image from EDF.

³ Sumner, J. and España, G. and Masson, C. and Aubrun, S. *Evaluation of RANS/actuator disk modelling of wind turbine wake flow using wind tunnel measurements.* 2013.

Elise Grosjean

. . ..

EDF wind turbines application with FV solvers

Two-grid method

Results

Figure: Rotor

Figure: Wind farm with actuator discs, image from EDF.

Actuator disc and $k - \varepsilon$ RANS equations

NIRB approach

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

The NIRB two-grid method is applied to approximate a quasi-stationary state.

NIRB approach 5 6 7

$$\mathcal{P}: (u_{ref}, \theta) \rightarrow u^F,$$

EDF wind turbines application with FV solvers

Two-grid method

Results

with u^F : velocity inside the actuator disc at final time.

- $u^F(\mathbf{x}; u_{ref}, \theta)$: Unknown
 - $u_h^F \in V_h$ on a fine mesh \mathcal{T}_h (HF),
 - $u_H^{\not\models} \in V_H$ on a coarse mesh \mathcal{T}_H .

1 Offline stage: $u_h^F((u_{ref}, \theta)_i)$: Snapshots on \mathcal{T}_h ($\in X_h^N$) 2 Online stage: $u_H^F(u_{ref}, \theta)$: Solution on \mathcal{T}_H ($H^2 \sim h$)

⁵R. Chakir, Y. Maday, *A two-grid finite-element/reduced basis scheme for the approximation of the solution of parameter dependent PDE.* 2009.

⁶E. Grosjean, Y. Maday, error estimate of the non-intrusive reduced basis method with finite volume schemes. 2021.

⁷E. Grosjean, Y. Maday, Error estimate of the Non-Intrusive Reduced Basis (NIRB) two-grid method with parabolic equations. 2022.

Elise Grosjean

Decomposition

Sonara

EDF wind turbines application with FV solvers

Two-grid method

Results

Separation of variables

$$u_h(\mathbf{x}; u_{ref}, heta) = \sum_{j=1}^N a_j^h(u_{ref}, heta) \Phi_j^h(\mathbf{x}),$$

 $(\Phi^h_j)_{j=1,...,N} \in X^N_h$: L²-orthonormalized basis functions (modes)

Coefficients $a_i^h(u_{ref}, \theta)$

- Optimal coefficients: $(u_h^F(u_{ref}, \theta), \Phi_j^h(\mathbf{x})),$
- Our choice: $(u_{H}^{F}(u_{ref}, \theta), \Phi_{j}^{h}(\mathbf{x}))$, with $(\Phi_{j}^{h})_{j=1,...,N} L^{2} \& H^{1}$ -orthogonalized $\mu = (u_{ref}, \theta)$

NIRB – OFFLINE/ONLINE

Grosjean

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

Elise Grosjean

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

Post-treatment

Post-Treatment: The rectification method ⁴ $(u_{H}^{i}, \Phi_{j}) \rightarrow (u_{h}^{i}, \Phi_{j})$

$$(A_i)_k = (u_H(\mu_k), \Phi_i)_{L^2}, \forall k = 1, \cdots, Ntrain$$

 $(B_i)_k = (u_h(\mu_k), \Phi_i)_{L^2}, \forall k = 1, \cdots, Ntrain$
 $D = (A_1, \cdots, A_N) \in \mathbb{R}^{Ntrain \times N}$

$$\frac{R_i = (D^T D + \lambda I_N)^{-1} D^T B_i, \forall i = 1, \cdots, N.}{u_{Hh}^N(\mu) = \sum_{i,j=1}^N R_{ij}(u_H(\mu), \Phi_j) \Phi_i}$$

⁴Rachida Chakir, Yvon Maday, Philippe Parnaudeau. Non Intrusive RB for Heat transfer 2018

Elise Grosjean

2D & 3D results

J

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

Wind turbines results

Figure: Mesh for one wind turbine

u_{ref}: Variable parameter

One application: 2D Wind turbine **Upstream velocity** X Wind turbine 6 D Uref

30 D

Turbine power $P = c_P \frac{1}{2} \rho A u_*^3$,

- c_P : Power coefficient, ρ : wind density, A: disc area.
- u_* : velocity upstream the wind turbine,

u_{ref} : Variable parameter

0

Figure: Mesh for one wind turbine

-20 D

Results

One application: 2D Wind turbine

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

- Turbine power $P = c_P \frac{1}{2} \rho A u_*^3$,
- *c_P*: Power coefficient, *ρ*: wind density,
 A: disc area,
- u_* : velocity upstream the wind turbine,

Wind simulation

- 2D mesh with 6500 cells, refined around the wind turbine.
- Rotor diameter: D=150m
- Hub height: 95.6m.
- Zooms around the probes (upstream the turbine)
- Zooms around the turbines

NIRB One application: 2D Wind turbine **Upstream velocity** Wind turbine 6 D Results Uref -20 D 30 D O Figure: Mesh for one wind turbine

- Turbine power $P = c_P \frac{1}{2} \rho A u_*^3$,
- c_P : Power coefficient, ρ : wind density, A: disc area.
- u_* : velocity upstream the wind turbine.

Wind simulation

- 2D mesh with 6500 cells, refined around the wind turbine.
- Botor diameter: D=150m
- Hub height: 95.6m.
- Zooms around the probes (upstream the turbine)
- Zooms around the turbines

NIRB One application: 2D Wind turbine **Upstream velocity** Wind turbine 6 D Uref -20 D 30 D 0 Figure: Mesh for one wind turbine

- Turbine power $P = c_P \frac{1}{2} \rho A u_*^3$,
- c_P : Power coefficient, ρ : wind density, A: disc area.
- u_* : velocity upstream the wind turbine,

Wind simulation

- 2D mesh with 6500 cells, refined around the wind turbine.
- Botor diameter: D=150m
- Hub height: 95.6m.
- Zooms around the probes (upstream the turbine)
- Zooms around the turbines

Results

One application: 2D Wind turbine

Grosjean

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

Figure : L^{∞} relative errors between the reference solution and u_{Hh}^{N} (with and without rectification P-T), Ntrain=66, u_{ref} = 10.5, on the probe

- Turbine power $P = c_P \frac{1}{2} \rho A u_*^3$,
- *c*_P: Power coefficient, *ρ*: wind density,
 A: disc area,
- u_* : velocity upstream the wind turbine,

Wind simulation

- 2D mesh with 6500 cells, refined around the wind turbine.
- Rotor diameter: D=150m
- Hub height: 95.6m.
- Zooms around the probes (upstream the turbine)
- Zooms around the turbines

3D application

JIL

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

Figure: Wind turbines

3D application

JL

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

Figure: Wind turbines

3D application

JL

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

Figure: Wind turbines

Parameter: Wind magnitude & incidence angle

3D application

JL

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

Figure: Wind turbines

Parameter: Wind magnitude & incidence angle

Results

3D mesh

Figure: Wind around the turbine

Computational costs (min:sec) Fine mesh Coarse mesh 40:00 03:00

15 / 18

3D results

Elise Grosjean

EDF wind turbines application with FV solvers

Two-grid method

Results

Relative errors with NIRB algorithm

Figure: Wind turbine (Leave-one-out)

Offline NIRB + rectification $N = 20$ (h:min)	Online NIRB (h:min)
15:10	00:05

3D results

Elise Grosjean

EDF wind turbines application with FV solvers

Two-grid method

Results

Relative errors with NIRB algorithm

Figure: Wind turbine (Leave-one-out)

Offline NIRB + rectification $N = 20$ (h:min)	Online NIRB (h:min)
15:10	00:05

Elise Grosjean

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

Conclusions & Perspectives

Several applications with offshore wind farms: Accurate approximations with computational costs of coarse solutions
 Development of two new NIRB tools

Figure: Meniscus tissue

Perspectives

- Two-grid a-posteriori error estimates
- Tests 5×5 wind farm with the new NIRB methods

Thank you for your attention!

NIRB – OFFLINE/ONLINE

.

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

Elise Grosjean

Results

NIRB – OFFLINE/ONLINE

JIL

Elise Grosjean

Results

NIRB – OFFLINE/ONLINE

Greedy algorithm $\rightarrow L^2$ orthonormalization. + Eigenvalue problem: $\forall v \in X_h^N$, $\int_{\Omega} \nabla \Phi_h \cdot \nabla v = \lambda \int_{\Omega} \Phi_h \cdot v$ $\rightarrow L^2(\Omega)$ and $H^1(\Omega)$ orthogonalization. $\mathbf{X}_{h}^{N} = \overline{\mathbf{Span}\{\mathbf{\Phi}_{1}^{h},\ldots,\mathbf{\Phi}_{N}^{h}\}}$ Greedv X for n = 1 N: $\widetilde{\mu}_{n} = \arg \max_{\mu \in \mathcal{G}} \frac{\left\| u_{h}(\mu) - \rho^{n-1}(u_{h}(\mu)) \right\|}{\left\| u_{h}(\mu) \right\|}$ V_h \mathcal{M}_h X_h^{n-1}

Un(11-

NIRB – OFFLINE/ONLINE

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

NIRB – OFFLINE/ONLINE

Grosjean

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

Elise Grosjean

3D Results

6.90+00 - 6 - 5

- 3

Introduction

EDF wind turbines applicatior with FV solvers

Two-grid method

Results

Figure: 3×3 turbines

Elise Grosjean

3D Results

6.90+00 - 6 - 5

- 3

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

Figure: 3 \times 3 turbines

Elise Grosjean

3D Results

6.90+00 - 6 - 5

- 3

Introduction

EDF wind turbines applicatior with FV solvers

Two-grid method

Results

Figure: 3×3 turbines

Elise Grosjean

3D Results

6.90+00 - 6 - 5

- 3

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

Figure: 3×3 turbines

Elise Grosjean

3D Results

6.90+00 - 6 - 5

- 3

Introduction

EDF wind turbines applicatior with FV solvers

Two-grid method

Results

Figure: 3×3 turbines

Elise Grosjean

3D Results

- 6.9e+00 - 6 - 5

- 3

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

Figure: 3×3 turbines

3D results

JIL

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

Relative errors with NIRB algorithm

Figure: Wind turbines (Leave-one-out)

3D results

JIL

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

Figure: Wind turbines (Leave-one-out)

Relative errors with NIRB algorithm

More results

110

.

Results

Relative errors with NIRB algorithm

Figure: Wind turbines

Nev crumber of basis functions (

-la Her

RANS

Introduction

EDF wind turbines application with FV solvers

Two-grid method

Results

- $u = (u_1, u_2, u_3)$: wind velocity,
- *p*: wind pressure,
- ρ: density,

- > μ : dynamic viscosity.
- ► Reynolds tensor: $\overline{u'_i u'_j}$,

$$\overline{F}$$
: additional source terms.

$$\begin{cases} \frac{\partial \rho}{\partial t} + \frac{\partial (\rho \overline{u}_i)}{\partial x_i} &= \mathbf{0}, \\ \frac{\partial \overline{u}_i}{\partial t} + \overline{u}_j \frac{\partial \overline{u}_i}{\partial x_j} &= -\frac{1}{\rho} \frac{\partial \overline{\rho}}{\partial x_i} + \frac{\partial}{\partial x_j} (\mu (\frac{\partial \overline{u}_i}{\partial x_j} + \frac{\partial \overline{u}_j}{\partial x_i}) - \frac{1}{\rho} \overline{u'_i u'_j}) + \overline{F}, \end{cases}$$