TP 3
#Install package
import sys
!{sys.executable} -m pip install numpy
!{sys.executable} -m pip install matplotlib
# import packages
import numpy as np
import scipy
from scipy import optimize
from scipy.optimize import minimize
Deterministic model
-
Time scale: the decisions are taken every hour during the day.
-
Optimization variables (at each time step) :
- the amount of energy to be stored or withdrawn from the battery
- the amount of energy bought or sold to the network.
-
Contraints:
- nonnegativity of variables
- evolution of the battery
- storage capacity of the battery.
-
Cost function:
- Cost of the energy bought on the network…
- minus the cost of the energy sold on the network.
The problem is modeled by:
-
Horizon: 24 hours, stepsize: 1 hour.
-
Optimization over $T= 24$ intervals.
-
Optimisation variable :
- $x(s)$ : state of charge of the battery at time $s$, $s= 0,…,T$
- $a(s)$: amount of electricity bought on the network ($s= 0,…,T-1$).
- $v(s)$: amount of energy sold on the network ($s= 0,…,T-1$).
-
Parameters:
- $d(s)$: net demand of energy (load minus solar production) at time $s$, $s= 0,…,T-1$.
- $P_a(s)$ : unitary buying price of energy at time $s$, $s= 0,…,T-1$
- $P_v(s)$ : unitary selling price of energy at time $s$, $s= 0,…,T-1$
- $x_{\max}$: storage capacity of the battery.
-
Contraints:
- $x(s+1)= x(s) - d(s) + a(s) - v(s)$, $\forall s= 0,…,T-1$
- $x(0)= 0$
- $a(s) \geq 0$, $\forall s=0,…,T-1$
- $v(s) \geq 0$, $\forall s=0,…,T-1$
- $0 \leq x(s) \leq x_{\max}$, $\forall s=0,…T$.
-
Cost function to be minimized: $$J(x,a,v)= \sum_{s=0}^{T-1} \Big( P_a(s) a(s) - P_v(s) v(s) \Big).$$
We call demand scenario a vector $(D(s))_{s=1,…,T}$.
Two set of scenarios are available:
- Training set $D_T$ : history of $NT$ demand scenarios. Used to build a probabilistic model for the demand and an appropriate control strategy.
- Simulation set $D_S$ : history of $NS$ demand scenarios. Used to test the control strategies. Avoid to build biased strategies.
Shifting of the time index:
The two available histories of demand scenarios contain $T_0$ values of the demand from the “previous day”, corresponding to the time intervals $-T0, −(T0 − 1),…,-2,-1$. A demand scenario is a vector of size $T + T0$. The training and simulation sets are matrices with $(T + T0)$ columns and respectively $NT$ and $NS$ rows. We “get access” to the demand at time $t$, for the scenario $l$ with $DT(l,t +T0)$ or $DS(l,t +T0)$.
Optimization problem in a form that is compatible with the function linprog
% Exercise 1: Indication: you should find optimal value= 124 with $d$ a-priori known
we changed the function to take $d$ as an input parameter
T= 24; # Time
T0=10 #Training times
x_max= 10; # battery maximum storage
P_a= np.array([2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 3, 3, 2]); # unitary buying price of energy at time s
P_v= np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1]); # unitary selling price of energy at time s
#d =np.array([-1, -1, -1, -1, -1, -2, 2 ,6, 8, 4, 2, 0, 0, -1, -2, -1, 0, 1, 3, 7, 9, 3, 2, 0]); # net demand of energy (already known)
#d=d.reshape((T,1))
P_a=P_a.reshape(T,1)
P_v=P_v.reshape(T,1)
NT=200
NS=200
import scipy.io
mat = scipy.io.loadmat('scenarios.mat')
DS = mat['D_S']
DT = mat['D_T']
# with T=2 (for testing purposes ...)
# T = 2;
#x_max= 5;
#P_a=np.array([-1, -1])
#P_v=P_a
#d =np.array([-1, -1])
#d=d.reshape(T,1)
#P_a=P_a.reshape(T,1)
#P_v=P_v.reshape(T,1)
#same as exercice 1
def solve_deterministic_pb(d):
...
c=np.concatenate((np.zeros((T+1,1)),P_a,-P_v),axis=0) #cost function: sum_s P_a a(s) - P_v(v)
#print(c) #columns of A must be equal to size of c
X=optimize.linprog(c,A_ub=A,b_ub=B,A_eq=Aeq,b_eq=Beq)
x=X.x[:T+1]
a=X.x[T+1:2*T+1]
v=X.x[2*T+1:]
#print("x:", X.x[:T+1])
#print(np.shape(X.x[:T+1]))
#print("a:", X.x[T+1:2*T+1])
#print(np.shape(X.x[T+1:2*T+1]))
#print("v:", X.x[2*T+1:])
#print(np.shape(X.x[2*T+1:]))
#print("Optimal cost", X.fun)
return x,a,v,X.fun
Exercice 6
compute $J_{anti}$, the optimal cost
Given a scenario $D$, compute $J_{anti}=\frac1{NS} \sum_{l=1}^{NS} J_{anti}(DS(l,.))$ , where $J_{anti}(DS(l,.))= \sum_{s=0}^{T-1} \Big( P_a(s) a(s) - P_v(s) v(s) \Big).$
expected result: J_eval= 10.2490
def lower_bound():
global T0,DS,NS
J= 0;
for l in range(0,NS):#=0:N_S-1
_, _, _, val = ... #only simulation D_S (pay attention to time shifting!)
J= ...
#print("val",val)
J= ...
return J
#% Exercise 6:
J=lower_bound()
print(J)
10.249021164754385
Exercice 7
The naive strategy (we don’t exploit the training set: $\mathcal{I}=0$)
online step: at time $s$, given $d(s)$, we choose $$(a(s),v(s))= \begin{align*} & (d(s),0) \textrm{ if } d(s) \geq 0,\ & (0,-d(s)) \textrm{ otherwise.} \end{align*}$$
Input: Demand scenario
def naive_online(D):
global T;
global P_a;
global P_v;
J=0;
for s in range(T):
if ...
a=...
v=...
else:
a=...
v=...
J= ...
return J
#% Exercise 7:
def naive_eval():
global DS,NS,T0;
J=0
for l in range(NS):
J=...
J= ...
return J
J=naive_eval()
print(J)
# the solution is 52.8324
NS 200
(200, 34)
10
[52.8323865]
Exercice 8
The reasonable strategy
- if $d(s) \geq 0 :$ we dip into the reserve x(s) and we buy electricity if $d(s) \geq x(s)$ (assert that $x=0$ in that case).
- if $d(s) \leq 0 :$ we stock energy in the battery as much as possible. If $d(s)\leq x(s) -x_{max}$, the surplus is sold.
Expected result: 28.0550
def raisonnable_online(D):
global T, P_a,P_v, x_max
x=0
J=0
for s in ...:
if D[s]>0:
if D[s]<x: # if demand less than our stock
x=... # no cost added
else:
J=... #we buy electricity for the demand
x= ...
else: #since D=net demand of energy load minus solar production: if D<0, we produce electricity via the solar prod
if D[s]>x-x_max:
x=... # we add -D[s] to stock, no cost
else:
J=...#surplus that we sold
x=...
return J
def raisonnable_eval():
global DS,NS, T0
J=0
for l in range(NS):
J=...
#print(J)
J=...
return J
raisonnable_eval()
array([28.05501615])
Exercice 9
Write a fonction sample realising the sampling of an arbitrary vector $h \in NE$ values. Use the function sort.
Write a function sample_training_set with output a matrix $E \in \mathbb{R}^{NE \times T}$ such that each column contains the sampled values of the vectors $DT[:,T0], DT[:,T0 +1],… DT[:,T0 +T-1]$.
Expected result:
First column : $[-4.77725278, -4.01198924, -3.38314885, -2.93038295, -2.57365075, -2.14186728, -1.76473744, -1.29947285 ,-0.66349418, 0.27839677]$
def sample(h,NE):
global NT
q= ...
h2=...
#print(h2)
z= np.zeros(NE)
for j in range(NE):
z[j]= sum(...)/q #! from j*q to (j+1)*q-1
return z
def sample_training_set(NE):
global T, T0,DT;
E= np.zeros((NE,T));
for t in range(T):
E[:,t]= ...
return E
E=sample_training_set(10)
print(E[:,0])
[-4.77725278 -4.01198924 -3.38314885 -2.93038295 -2.57365075 -2.14186728
-1.76473744 -1.29947285 -0.66349418 0.27839677]
Exercice 10
Write a function auto_reg_1 realizing the approximation of $d(t)$ as an autoregressive process of order 1
Input: $NE$
Output variables: $\gamma \in \mathbb{R}^T, \beta_1 \in \mathbb{R}^T, E \in \mathbb{R}^{NE\times T}.$
Optional. Write a function auto_reg which realizes the approximation of d(t) by an autoregressive process of arbitrary order (given as input variable).
Expected results:
$\gamma[0]= -0.3649, \beta_1[0]= 0.7682, $ $E[:,0]=[ -1.0069, -0.8394, -0.7178, -0.5657, -0.0792, 0.4544, 0.5283, 0.6303, 0.7166, 0.8794]$
def auto_reg_1(NE):
global T,T0,DT
beta1= np.zeros(T)
gamma= np.zeros(T)
E= np.zeros((NE,T))
for t in range(T):
fun= lambda x: ...
sol= minimize(fun,[0,0]);
x=sol.x
#print(x)
beta1[t]= ...
gamma[t]= ...
E[:,t]= sample(...)
return gamma, beta1, E
gamma,beta1,E=auto_reg_1(10)
print(gamma)
print(beta1)
#print(E)
[-3.64920596e-01 3.39541820e-01 -2.32134334e-03 -2.16750096e-01
-8.59434452e-02 -1.12819996e+00 4.16569707e+00 3.37867512e+00
1.27918380e+00 -4.71137843e+00 -1.23576099e+00 -1.39483077e+00
6.40439724e-01 -8.69026959e-01 -7.29476724e-01 1.11208561e+00
6.42515437e-01 6.23130647e-01 1.67544278e+00 3.71966527e+00
1.42443036e+00 -6.44641462e+00 2.90174094e-01 -1.54561913e+00]
[0.76823356 0.71200769 0.81019918 0.97478824 1.0888146 0.93996108
0.85514147 0.70638915 0.76137643 0.9463442 1.0131899 0.99646022
0.83403957 0.70257359 0.77274986 0.91298702 1.01864786 0.99926106
0.86872348 0.72124587 0.6993772 0.83272378 0.99200363 1.00905716]
def auto_reg_l(NE,l): #order l
global T,T0,DT
beta= np.zeros((l,T))
gamma= np.zeros(T)
E= np.zeros((NE,T))
for t in range(T):
fun= lambda x: ...
sol= minimize(fun,[0]*(l+1));
x=sol.x
#print(x)
gamma[t]= ...
for lelement in range(0,l):
beta[lelement,t]= ...
E[:,t]=...
return gamma, beta, E
gamma,beta1,E=auto_reg_l(10,2)
print(gamma)
print(beta1)
[-0.49447424 0.37501009 0.18948557 -0.11351881 -0.05104727 -1.09606017
4.02081014 4.0484273 1.77241686 -4.76320081 -1.99718931 -1.73921763
0.45573183 -0.76584273 -0.79697917 1.1130644 0.88768632 0.76513303
1.76105607 3.77394906 1.77363576 -6.53771775 -1.53916139 -1.22538599]
[[0.66697329 0.53738259 0.6436579 0.77253464 0.83114445 0.81528601
0.68730267 0.56168645 0.58927249 0.83395878 0.8950604 0.71590124
0.66891166 0.614444 0.61605273 0.81281008 0.88831695 0.84428652
0.74462709 0.68757048 0.59189968 0.65814097 0.77891484 0.72289816]
[0.11560664 0.17299553 0.17671066 0.24259814 0.3360263 0.16978016
0.18828213 0.15055124 0.16505034 0.1262086 0.15323632 0.35379428
0.20047631 0.09107688 0.15360972 0.11485738 0.16338539 0.2025645
0.14954614 0.03640317 0.10365213 0.18856198 0.26854245 0.38785429]]
Exercice 11
Predictive model.
Phase offline.
Approximation of $d(t)$ with an autoregressive process of order 1, with the help of coefficients $\gamma$ and $\beta_1$.
Phase online.
Let $t$ be the current time step. Let $x_t$ denote the current state-of-charge of the battery and let $d_t$ denote the demand at time $t$.
1/ Prediction.
Compute $(D_p(s))_{s=t,…,T}$ as follows: $$ \begin{align*} &D_p(t)= d_t,\ &D_p(t + 1) = \gamma(t + 1) + \beta_1(t + 1)D_p(t), D_p(t+2)= \gamma(t+2)+\beta_1(t+2)D_p(t+1),\ &… \ &D_p(T)=\gamma(T)+\beta_1(T)D_p(T −1). \end{align*}$$
2/ Optimization.
We solve: $$ \underset{\underset{\huge v(t),…,v(T)}{\underset{\huge a(t),…,a(T)}{x(t),…,x(T+1)}}}{\textrm{inf}}\ \sum_{s=t}^{T} \Big( P_a(s) a(s) - P_v(s) v(s) \Big). $$ s.t
- $x(s+1)= x(s) - D_p(s) + a(s) - v(s)$, $\forall s= t,…,T$
- $x(t)= x_t$
- $a(s) \geq 0$, $\forall s=t,…,T$
- $v(s) \geq 0$, $\forall s=t,…,T$
- $0 \leq x(s) \leq x_{\max}$, $\forall s=t,…T$.
Implement the predictive method
Expected results:
- $N_E= 10$
- Evaluation cost: $5.0205275654553985$.
def predictive_online(D,gamma,beta,t,y):
# t= init time, y= init energy stock
global T,P_a,P_v,xmax
D_p= np.zeros([T-t])#for t0=0, we want to approximate all the D(s) from s=0 to s=T-1
## First we approximate by an autoregressive processus
D_p[0]= ...
for s in range(1,T-t):
# s=1 corresponds to t+1 and s=T-t-1 correponds to T-1
# thus, D_p[s+1]=gamma[s+1] + beta[s+1]*D_p[s] for an autoregressive of order 1
# gives D_p[1]=gamma[t+1] + beta[t+1]*D_p[0];
# and more generally for any s, yields D_p[s]=...?
D_p[s]=...
## Then solve the optimization problem
# xi<=xmax for i = 0.. T: concatenate A1=Identity matrix & A2 & A2
A1=np.matrix(np.eye(...))# should give T+1 for t=0
A2=np.zeros((...)) #should give (T+1,T) for t=0
A=np.concatenate((A1,A2,A2), axis=1)
# -x, -a, -v <= 0,0,0
A3=-np.eye(...)
A=np.concatenate((A,A3), axis=0)
#print(np.shape(A))
# xi<=xmax for i = 0.. T
B1=np.array([...])
# -x, -a, -v <= 0,0,0
B3=np.zeros((...))
B=np.concatenate((B1.transpose(),B3), axis=0);
#print(B)
"""
####### Equality constraints: #######
"""
# Aeq1:
M1=np.eye(...) #-x(s) and x(s+1) s=0, T-1
M2=np.zeros((...)) #
M=np.concatenate((-M1,M2), axis=1)+np.concatenate((M2,M1),axis=1)
Aeq1=np.concatenate((M,-M1,M1), axis=1) # M & -a(s) & v(s) s=0, T-1
Aeq2=np.concatenate((...)) # #x(0)=0, (with concatenate, don't use axis=1 for only one line, use double parentheses)
Aeq=np.concatenate((Aeq1,Aeq2.transpose()),axis=0)
Beq=np.concatenate((...))#.reshape((1,1))))
#print(Beq)
"""
solving min c^T * X s.t. A X <= B and Aeq X= Beq
no x in min: 0;
a P_a -v P_v
"""
# min c^T [x,a,v]
c=np.concatenate((...),axis=0) #cost function: sum_s P_a a(s) - P_v v(s)
#print(c) #columns of A must be equal to size of c
X=optimize.linprog(c,A_ub=A,b_ub=B,A_eq=Aeq,b_eq=Beq)
x=X.x[:T-t+1]
a=X.x[T+1-t:2*(T-t)+1]
v=X.x[2*(T-t)+1:]
J= X.fun
#print("J",J)
return x,a,v,J#X.fun
def predictive_eval(gamma,beta1):
global DS,NS,T0;
GlobalJ= 0;
for l in range(NS):
_,_,_,J= ...
GlobalJ= ...
GlobalJ= ...
return GlobalJ
J=predictive_eval(gamma,beta1)
print(J)
5.0205275654553985
In fact, the previous implementation respects the constraints $x(s+1)=x(s)+a(s)−v(s)−D_p(s)$ with the autoregressive demand $D_p$ but not with the true demand $D(s)$ for each $s$, such that we can’t compare this cost (5.0205275654553985) with the optimal cost from exercice 1.
Since at every time $t$ the demand $D(t)$ is revealed, we can use it to enhance our model (such that the constraint with the true demand holds):
In that case, we only save the solution $x(s+1)$, $a(s)$, $v(s)$ for one time $s$ and then update the cost with these saved solutions (and proceed with $s+1$ and so on…) for $s$ going from an initial time $t$ with an initial energy stock y to $T$.
Correct the previous version in order that the constraint with the true demand holds and compare your result with an autoregressive process of order 1 and with an autoregressive process of order 0.
To simplify the implementation, you can take $t=0$ and $y=0$.
#Expected result order 1: 13.22638501
# of order 1
def predictive_online(D,gamma,beta): #with t0=0 and y=0
global T,P_a,P_v,xmax
x_saved= np.zeros((T+1));
a_saved= np.zeros((T));
v_saved= np.zeros((T));
## Then solve the optimization problem
# xi<=xmax for i = 0.. T: concatenate A1=Identity matrix & A2 & A2
for t in range(0,T): # from init t0=0 to T-1
D_p= np.zeros(T-t)
D_p[0]= ...
for s in range(1,T-t):#(T-t+1) # 0, 1, ..., T-2 for t=1
D_p[s]= ...
#print("t",t)
A1=np.matrix(...)# should give T+1 for t=0
A2=np.zeros((...)) #should give (T+1,T) for t=0
A=np.concatenate((A1,A2,A2), axis=1)
# -x, -a, -v <= 0,0,0
A3=-np.eye(...)
A=np.concatenate((A,A3), axis=0)
#print(np.shape(A))
# xi<=xmax for i = 0.. T
B1=np.array(...)
# -x, -a, -v <= 0,0,0
B3=np.zeros((...))
B=np.concatenate((B1.transpose(),B3), axis=0);
#print(B)
"""
####### Equality constraints: #######
"""
# Aeq1:
M1=np.eye(...) #-x(s) and x(s+1) s=0, T-1
M2=np.zeros((...)) #
M=np.concatenate((-M1,M2), axis=1)+np.concatenate((M2,M1),axis=1)
Aeq1=np.concatenate((M,-M1,M1), axis=1) # M & -a(s) & v(s) s=0, T-1
Aeq2=np.concatenate((...)) # #x(0)=0, (with concatenate, don't use axis=1 for only one line, use double parentheses)
Aeq=np.concatenate((Aeq1,Aeq2.transpose()),axis=0)
Beq=np.concatenate((...))
#print(Beq)
"""
solving min c^T * X s.t. A X <= B and Aeq X= Beq
no x in min: 0;
a P_a -v P_v
"""
# min c^T [x,a,v]
c=np.concatenate((...),axis=0) #cost function: sum_s P_a a(s) - P_v v(s)
#print(c) #columns of A must be equal to size of c
X=optimize.linprog(c,A_ub=A,b_ub=B,A_eq=Aeq,b_eq=Beq)
x_saved[t+1]= X.x[1];
a_saved[t]= X.x[T+1-t];
v_saved[t]= X.x[2*(T-t)+1];
J= np.dot(P_a.transpose(),a_saved)-np.dot(P_v.transpose(),v_saved)
#print("J",J)
return x_saved,a_saved,v_saved,J
def predictive_eval(gamma,beta1):
global DS,NS,T0;
GlobalJ= 0;
for l in range(NS):
_,_,_,J= ...
GlobalJ= ...
GlobalJ= ...
return GlobalJ
gamma, beta,E=auto_reg_1(10) #gamma,beta1,E=auto_reg_l(10,1) #auto_reg_1(10)
predictive_eval(gamma,beta1)
array([13.22638501])
# autoregressive process of order 0
def predictive_online_0(D,gamma): #with t0=0 and y=0
...
return x_saved,a_saved,v_saved,J
# Expected result:10.75253499
def predictive_eval(gamma):
global DS,NS,T0;
GlobalJ= 0;
for l in range(NS):
_,_,_,J= ...
GlobalJ= ...
GlobalJ= ...
return GlobalJ
gamma, _,E=auto_reg_l(10,0) #gamma,_,E=auto_reg_l(10,0) of order 0
predictive_eval(gamma)
Exercise 12;
Implement the control strategy induced by the dynamic programming principle with the auto-regressive model of order zero.
% Answer: 10.27
from scipy.optimize import minimize
#interpolation used in backward step (same as in TP1, exercice 2)
def interpolate_2_0(y,val):
def objective(alpha):
return ...
# initial guess
n = 3
alpha0 = np.zeros(n)
# show initial objective
#print('Initial SSE Objective: ' + str(objective(alpha0)))
# optimize
solution = minimize(...)
#print('Output SSE Objective: ' + str((solution.fun)))
#print('Optimal minimizers: ' + str((solution.x)))
return solution.x
# Solve the dynamical programming step with the coefficients alpha to approach V(t+1,z)
def DP_solve_0(t,y,alpha,d_t):
global x_max,P_a,P_v
def cost(X):
# X[0]=z X[1]=a, X[2]= v
# inf P_a*a -Pv*v + V(t+1,z): with (V(t+1, z) as a fonction of different values of z, approach by the coeffs alpha
return ...
# x,a,v>=0, x<=xmax -> bounds
# z -a +v = y -d[t] -> contraints
cons = ({'type': 'eq', 'fun': lambda x: ...})
bnds = (...)
res = minimize(...);
#print("objective solution: ",res.fun)
#print("min solution: ",res.x)
z= ...
a= ...
v= ...
return z,a,v,res.fun
def DP_backward_0(N_E):
global T,J,x_max
D = ... # for order 0: sampling of size (T,N_E)
alpha= ... #coefficients of interpolation
y_grid= ...#level of stock energy in [0,x_max]
for j in range(J):
y_grid[j]=...
for t in reversed(range(T)): # Backward in time
Val_update=...
for j in range(J): # for all value y_j, we evaluate V(t,y_j) (first with alpha=0 )
for k in range(N_E):
_,_,_,val= ...
Val_update[j]+=...
Val_update[j]/=...
alpha[:,t]= ... # interpolation to get alpha_t (alpha = interpolation with (y_j)_j of (V(t,y_j))_j )
return alpha
def DP_forward_0_online(alpha,d):
global T,P_a,P_v
x= ...
a= ...
v= ...
for t in range(0,T):
z,a0,v0,_=...
x[t+1]= ...
a[t]= ...
v[t]= ...
val=...
return x, a, v, val
def DP_forward_0_eval(N_E):
global N_S,D_S,T_0,T
cost= 0;
for l in range(NS):
_,_,_,J= ...
cost += J
cost /= NS
return cost
J= 10
N_E= 10
alpha= ...
cost = ...
print(cost) #