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to sum up the courses ...

Necessary conditions

Sufficient conditions

Abstract formulation

(exist.)

if K compact, f € C°(K)
then at least one solution

if K closed,
f € C°(K), coercive
then at least one solution

Necessary conditions

Sufficient conditions

No constraints

if X local sol.,

if f e C3(K), Vf(x) =0,

K =R (opt.) f € C*(K) then, D?f(X) positive def.
D?f(X) is positive semi-def. then X local sol.
Affine f convex,
constraints X local sol. then KKT then KKT=global sol.
Non-linear f convex,

constraints

X local sol., LICQ then KKT

h affine, g convex,
then KKT=global sol.




And to sum up the courses ...

Necessary conditions Sufficient conditions
Abstract formulation if K compact, f € C°(K)
(exist.) then at least one solution
if K closed,

f € C°(K), coercive
then at least one solution

Find a local solution

No constraints Gradient Descent

Affine Penalty methods
constraints

Non-linear
constraints




Introduction

Aim of the lecture: a general presentation of one numerical
methods for constrained optimization.

m Penalty methods ~~ equality constraints
m Projected gradient methods ~~ inequality constraints
well suited if constraints projection is possible and easy to compute.

Reference:

& Nocedal and Wright. Numerical optimization. Springer Science and Business
Media, 2006.

& Boyd and Vandenberghe. Convex Optimization. Cambridge University Press,
2004.



Penalty methods
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Penalty methods for constrained optimization
m Quadratic penalization
m Augmented Lagrangian
m Lagrangian decomposition
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Quadratic penalization

We consider in this section

in]fé f(x), subject to: h(x) =0, (P)
x€RM

where f: R” — R and h: R" — R™ are given and “smooth”.

A general difficulty: we need to cope with two general goals:
m Minimizing f
m Ensuring the feasibility of x.

When designing a numerical method, the question arises:
Given an iterate xi, should we look for xx41 so that

FOkr) < Flx) or [[hGacra) | < [1hGa)l 7
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Quadratic penalization

Main idea: combining the two objectives into a single one.
Given a real number ¢ > 0, consider the penalty problem:

inf Qc(x) = £(x) + = [[A(x)] (Pe)

A rough statement: if c is large, (P) and (P.) are “almost”
equivalent.

Big advantage of the approach: numerical methods of
unconstrained optimization can be employed for solving (P.).
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Quadratic penalization

Exercise.
Consider the problem:

inf x, subject to: x = 0.
x€R
What is the solution X to the problem?

Calculate the solution x. to the corresponding penalized
problem Pe.

Verify that x. — X.
c——+oo
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Quadratic penalization

Solution.

Obviously x = 0, since 0 is the unique feasible point of the
problem.

Let ¢ > 0. We have Qc(x) = x + $x? and VQc(x) =1 + cx.

Therefore, )
VQi(x)=0<= x = -z
Since Q. is convex, x. := —1/c is the unique solution of (P¢).
Obviously

Xe=-1/c — 0=X%.
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Quadratic penalization
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Figure: Graph of Q., for various values of ¢
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Quadratic penalization

Let cx — oo. Let (xx)ken be a sequence in R". Assume that
m For all k € N, x is the solution to (Pc,).
m The sequence (xx)ken converges, let X denote the limit.
m There exists X such that h(X) = 0.

Then, X is a solution to the original constrained problem (P).

Proof. Step 1. Let x be a feasible point (that is, h(x) = 0). Then,
Ck 2
Qe (x) = F(x) + S [1hG) = £(x).

In particular, Qc (%) = f(X).
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Quadratic penalization

Step 2: X is feasible. For all k € N, we have

el = Qa, (xk) — (i)
< Qe (X) — f(x«) [Optimality of x|
= f(X) — f(xk)- [Equality of Step 1]

Since f(xx) — f(x), the sequence (f(xk))ken is bounded.
Therefore, there exist M > 0 such that cx||h(xx)||*> < M. Thus

[h(x)ll < VM/ck, VkeN.

Passing to the limit, we get ||h(X)|| < 0. Thus X is feasible.
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Quadratic penalization

Step 3. Optimality of X. Let x be feasible. We have

F(xic) < F(xic) + cillh(x)lI>

= QCk (Xk)
< Qe (x) [Optimality of x|
= f(x). [Equality of Step 1]

Passing to the limit, we get
f(x) < f(x).

Thus X is optimal.
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Quadratic penalization

The result of the lemma must be seen as an “ideal” situation.

Difficulties in practice:

m The problem (P.) may not have a solution, even if (P) has
a solution. Example:

inf x3,  subject to: x = 0.
xeR

m The sequence (xx)ken May not converge.

m The problem (P.) is hard to solve when c is large, it is likely
to be ill-conditioned (see next example).
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Quadratic penalization

Example. Consider:

1
inf  =(x>+ (y —1)?), subject to: x = y.
(x,;/r;eRZQ(X (y —1)?), subjectto: x =y

Projection problem of the point (0, 1) on the line {(x,y)|y = x}.
Exercise. Verify the following statements.

m Solution: x* = (0.5,0.5).

m Solution of P, the penalty function, is:

xe\ 1 c
ve)] 142c\1+c)°

m There exists a constant M such that for all ¢ > 0,

1(xes ye) = (%, 7)Il < M/e.
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Quadratic penalization

Solution.

Vif(x,y)= X ). The function f is convex and thus, the global
y—1

solution of the unconstrainted version is (0,1). With the constraints, we
aim at minimizing %(2x2 —2x + 1), and the unique solution is obviously
x =0.5.

Qe(x)=21(*+(y—1)*) + £(y — x)* and

: (y =x)
x—c(y —x . . .
VQc(x,y) = ( ity x)) and since Qc is convex, the unique

. o(xey 1 c
solution of P. is: (yc> =1r2c (1 N c) .

. X\ . C 1 _1(1
Jm, (y) = Jim, e (1/c+ 1) ~2 (1)
10, ve) = (0.5,0.5)|* = 2% = ll(xe, ve) — (0.5,0.5)| = %2 < .
_(14+c —c
Yet, V? Q(x,y)_< e 14c

yields difficulties with e.g. Newton algorithm (V?Q - p = —V Q) with
abrupt function changes.

> which is ill-conditioned for large c. It



Penalty methods
0000000000080 00000

Quadratic penalization

Figure: Graph of Q., for ¢ = 0.
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Quadratic penalization
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Figure: Graph of Q., for ¢ = 0.5.
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Quadratic penalization
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Figure: Graph of Q., for ¢ = 1.
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Quadratic penalization

Level-sets of Q_

Figure: Graph of Q., for ¢ = 2.
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Quadratic penalization

=

Level-sets of Q_

Figure: Graph of Q., for ¢ = 5.
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Penalty algorithm

General idea: increase the value of ¢ progressively, to
mitigate the difficulty of minimizing Q..
Algorithm:
Input: Choose ¢y > 0, starting point xp € R".
For k=1,..,.K—1, do
m Solve (P,) (e.g. with a gradient descent algorithm starting
from x,_1) and set xx the solution.
m If x, is such that h(xx) = 0, stop.
m Otherwise choose cx41 > ck.

End for.
Output: xk.
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Penalty algorithm

Qel(x) = (x) + 51 A()|

VQc(x) = VF(x)+ c(h(x), Vh(x))
= VL(x, ch(x))

Ckh(Xk) >~
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Augmented Lagrangian

Unlike the penalty method, with the augmented Lagrangian
method is not necessary to take ¢ — oo in order to solve the
original constrained problem, avoiding ill-conditioning.
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Augmented Lagrangian

The two ideas of the augmented Lagrangian method:

Solving a penalty problem (like (P.)) also yields an
approximation of the Lagrange multiplier.

We can “improve” the penalty function Q. with the
knowledge of that approximation.

Algorithm: at each iteration,
m the penalty parameter is increased

m the approximations xj of the solution and Ay of the Lagrange
multiplier are improved.
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Augmented Lagrangian

Let ¢ > 0. The augmented Lagrangian L.: R" x R™ — R is
defined by

Le(x, 1) = () + (1, h(x) + 5 |G

VLe(x, 1) = VF(x) + (, Vh(x)) + (ch(x), Vh(x))
= VL(x, pu+ ch(x))

i + ckh(xx) ~ 1

h(Xk) ~ 2 ;kMk

Pk+1 = fk + Coh(Xpq1)
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Augmented Lagrangian

Le(x, 1) = F0) =+ (b)) + S [1AG) 2
We have
Le(x, 1) = LOx 1)+ 5 () 2
= Qe(x) + {11, ()

s Sin o Bz Il
= F0) + SIhG) + 22— 21

For a fixed A, Lc(+, i) still serves as a penalty function. If x. ,
minimizes L.(x, ) and if ¢ is very large, then

m f(xc,) is small
m S[|h(x) + 2] is small = ||A(x) + £]| is very small
— ||h(x)]| is very small.
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Augmented Lagrangian

The new penalty problem:

inf Lo(x, ). P.
inf L(x,10) (Pes)

Let X be a local minimizer of (P). Under technical assumptions,
there exists i and € > 0 such that for all ¢ > ¢,

m the KKT conditions hold true

m X is a local solution to (P ).
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Reminders

Necessary conditions Sufficient conditions
Abstract formulation if K compact, f € C°(K)
(exist.) then at least one solution
if K closed,

f € C°(K), coercive
then at least one solution

Necessary conditions Sufficient conditions
No constraints if X local sol., if f € C3(K), VF(X) =0,
K =R (opt.) f € C*(K) then, D?f(X) positive def.
D?f(X) is positive semi-def. then X local sol.
Affine f convex,
constraints X local sol. then KKT then KKT=global sol.
Non-linear f convex,
constraints X local sol., LICQ then KKT h affine, g convex,
then KKT=global sol.
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Augmented Lagrangian

The new penalty problem:

Jnf Le(x, p)- (Peu)

Let X be a local minimizer of (P). Under technical assumptions,
there exists i and ¢ > 0 such that for all ¢ > c,

m the KKT conditions hold true

m X is a local solution to (P ).

Idea of proof. We have
VLR, B) = VL(%,fi + ch(R)) = VL(,Fi) = 0.
V2L(%, i) = V2L(%, i) + ¢(VA(%), Vh())

For c large enough, V2L.(x, ji) is positive definite.
Therefore, X is a local solution.
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Augmented Lagrangian

Example 1. Consider inf,cr x — x?, subject to: x = 0.

Exercise.
m Write the Lagrangian formulation and find the Lagrangian
multiplier.
m Does KKT holds for x = 07

m Write the augmented Lagrangian (P ;) and show that X is a
local solution to (Pc ) if ¢ > C.
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Augmented Lagrangian

Example 1. Consider inf,cr x — x2, subject to: x = 0.
m Solution X = 0.
m Lagrangian L(x, i) = x — x? + px. We have
Vix,p)=1-2x+pu=14+p = p=-L

m Augmented lagrangian:

c c
Le(x, 1) = x — x> + px + §x2 =1+ p)x+ (5 — 1)x2.

If c >C:=2, Lc(-, 1) has a unique minimizer

p+l  p—p
Xen = 9T 2 ¢

In particular, xc z = X.
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Augmented Lagrangian

-3 -2 -1 0 1 2 3
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Quadratic penalization

Example 2. Consider:

. 1 2 2 .

inf  ~(x*+ (y—1)°), subjectto: x=y.
Projection problem of the point (0, 1) on the line {(x,y) |y = x}.

Exercise. Verify the following statements.
m Solution: (x,y) = (0.5,0.5), iz = 0.5.
m Solution of (P, ) (aug. lagrangian):
Xe\ _ 1 ctp
(yc> o <1 +e- u) '

m There exists a constant M such that for all ¢ > 0,

1(xe, ye) = (%, 7)| < M| — pil /e
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Quadratic penalization

Solution.

1.

The function f is convex: the global solution of the unconstrained
version is given by stationarity:

Vi(x,y) = (8) which can be rewritten (yi 1) = (8)

We find: x =0 and y — 1 = 0 and thus, the global solution of the
unconstrained version is (0, 1).
With the constraints (y = x), we can replace y by x in the objective
function f: we aim at minimizing f(x) = 1(2x* — 2x +1).
Again, f is convex so the global solution is given by the point
satisfying stationarity: Vf(x) =2x —1 = 0. We find the unique
solution X = 0.5.
To find the Lagrange multiplyer, we replace in the Lagrangian
gradient, X and y by 0.5:
L(%,7,7) = F() + A7 — ), s0

X

ooy rope oy [ X0
VL(%,y, i) = VI(X) + iVh(x,y) = (y— 1+ﬁ> and by

stationarity VL(X,y, i) = (8) implies that X — i = 0 and

y—14+ i =0. We find g = 0.5.
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Quadratic penalization

C
Leu(x,y) = f(x,¥) + S h(x,y)* + ph(x, y)

S0F+ (= 1) + S0 =+ uly = %)

(can be rewritten 3 (x* + (y —1)%) + 5(x — y)* 4+ p(x — y)) and
Vi ,u(x,y) = (y i;i()c’(; i)):)ﬁ ,u)’ and since L, is convex, the
unique solution of (Pc,,.) is the solution of stationarity condition:

Vieu(x,y) = <y i;i(}c/(; i)x;iu) - (8)

It gives two equations: x — c(y — x) — =0 and

y — 14 c¢(y — x) + » = 0 Adding the two together, we find
x+y—1=0,andthusx=1—yory=1-—x.

In the first equation, we replace y by 1 — x:
x—c(l=x—x)—p=x(14+2c)—c—pu=0, and thus, x =
the second one, we replace x by 1 — y:
y=1l4+cly—-1+y)+p=y(1+2c)—c—1+ =0, and thus,

_ ltc—p e\ _ 1 c+p
y 1+2c'SO’ (}/c 1—|—2C (1_|_C_M>'

ctup

Tioc and in
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Quadratic penalization

3. |l(a, b)|I* = a* + b? (for euclidean norm)

o2 _(CFH o o ldc—p o
[Gerye) = E AN = ({0 =% + (g — )
L cHp 2 l+c—p 2
=(759¢ ~ 05 + ({350 —05)
:ﬁ((chu—O.S—C)Q+(1+C—/~L—0~5_C)2)
:ﬁ((u—o.5)2+(0.5—u)z)
_2(p—05)°
= 1207
_2An=p)
(1+2¢)2

(%, ye) — (0.5,0.5)|| = {2 | — | < MIe—il,
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Augmented Lagrangian

= N
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Figure: Level-sets L (-, i), for c =1 and = 0.
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Augmented Lagrangian
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Figure: Level-sets Lc(-, i), for c =1 and =0, 25.
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Augmented Lagrangian

p——

= Level-sets of Q,
— . \
® x
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Figure: Level-sets L (-, p), for c =1 and = 0,5.
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Augmented Lagrangian

Algorithm.

Input:
m Initial point and multipliers (xp, o) € R" x R™
m Initial penalty parameter ¢y > 0, initial tolerance g > 0
m Tolerance ¢ > 0.
Set k = 0.
While ||DyL(xk, k)| > € and || h(xk)|| > &,
m Find xxq1 such that || DeLe, (Xkt1, pik )| < k-
If ||h(xks1)]| is small, set pgr1 = pk + ckh(xk+1). Reduce e.
m Otherwise, increase cy.
m Set k=k+1.
End while.

Output (xk, Ak)-
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Lagrangian decomposition

Main ideas of Lagrangian decomposition methods:
m We take ¢ = 0 in the augmented Lagrangian. At iterate k,
given an approximation py of the Lagrange multiplier, we solve

inf L(x, pk)- (Py)
x€R"
where p is found with the following maximization

sup L(x, )
pneERM

Since V, L(x, 1) = h(x), this maximization is solved by
iterating with an ascent gradient step to approximate the
solution of h(x) = 0:

m Given a solution xk11, the Lagrange multiplier is updated by

fk+1 = Pk + ah(Xk1),

where a > 0 — Uzawa’s algorithm.
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Lagrangian decomposition

Remarks.

m Convergence of such methods can be established only under
convexity assumptions.

m The stepsize o > 0 must in general be small enough to ensure
convergence. Instead of a fixed stepsize, one can use

A1 = Ak + oug(Xk1),

m One may consider instead of the primal problem (P) the dual
problem

d* = inf L P
o o L0019 )

and we have p* > d*.
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Lagrangian decomposition

Main advantage of Lagrangian decomposition: very often the
minimization of L can be “parallelized”.

Standard case: additive constraints.

m Consider

inf fi(x1) + fa(x2), subject to: hi(x1) + ha(x2) = d,
(x1,%2)EX1 X X2

where f1, f», X1, X5, h1, hp, and d are given.

m Lagrangian:

L(x1, x2, 1) = fi(x1) + fa(x2) + (p, h1(x1) + h2(x2) — d)
= |00 + (i ma)) | + | ) + (1, hoxa) | = (u,d).

=:L1(x1,p) =:Lo(x2,u)
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Lagrangian decomposition

Given p, the minimization of L(-, \) is decomposed into two
subproblems:

inf Ly(x1, ) and inf Lo(x2,\),

x1€RM xpER™

which can be solved independently. Very often the two
subproblems are much easier to solve than the original problem.

Remark. Straightforward generalization to the case

inf fl(Xl)‘f'---—FfK(XK), s.t. hl(Xl)—I—...—l-hK(XK) =K.

X1y XK
ERM x...R"K

— Decomposition in K subproblems (at each iteration).
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Lagrangian decomposition

1. Application 1: time decomposition.

m Two production units, with two independent production
processes represented by the variables

Problem:
. X1 X2
f — — s s.t. { =
XIQR2 1+x1 44 x 2 d
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Lagrangian decomposition

X1 X2
L(x,p) = — -
1+ X1 4+ x
If x1 +x2 > d, the engine must be rented for a longer time: the
cost associated to constraints is increased. The incentive uy is too
small, it must be increased.

+ u(xy + xp — d).

If x; +x» < d, the cost associated to constraints is decreased. The
incentive L is too big, it must be decreased.
This is consistent with the formula

Lkl = pk + ax(x1 + x2o — d) (4.1)
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Lagrangian decomposition

Application 2: stochastic decomposition.

m A production process is decomposed over two periods.
A random event with two outcomes w; and wy, with
probabilities p and (1 — p), arises inbetween.

m Optimization variables:
m x;: decisions taken if outcome w; arises
m x: decisions taken if outcome w, arises
m y: decisions taken before the random event.
Example: purchase of gas y on a day-ahead market (that is,
on a given day for the next one).
Random event: temperature, which impacts consumption.
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Lagrangian decomposition

m Abstract problem:

( inf : pf(x1,y,w1) + (1 — p)f(x2, y,w2).
X1,X2,Y
(x1,y)eX
(x2,y)eX

m Equivalent problem (with non-anticipativity constraint):
inf  pf(x1,y1,w1) + (1= p)f(xe,y2,w2), st y2—y1 =0.
(x1,%2,y1,y2

(x1,y1)eX
(x2,y2)€X

m Independent (w.r.t. randomness) sub-problems:

inf  pfi(x1,y1,w1) + piyr, inf (1 —p)h(x2,y2, w2) — fkyo.
(x1,y1)€X1 (x2,y2)EX2
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Projected gradient method
m Projection
m Method
m Combination with penalty methods
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Projection

Idea: Apply steepest descent method but project the path
onto the constraints. The projected gradient method uses a
mapping called projection defined below.

Let K C R" be a non-empty, convex, and closed set. For all
xp € R", there exists a unique solution to the problem

inf ||x — onz, subject to: x € K.
xERN

It is called projection of xg on K, and denoted Projx(xo).

Remark. The projection depends on the chosen norm || - ||.
For simplicity, we consider the Euclidean norm.
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Projection

Example 1: projection on a cuboid.
Let K be described by

K={xeR"|{ < x <u},

where the coefficients ¢1,....0, € RU{—00} and
ui,...,up € RU {400} are given.

Let x € R", let y = Proj,(x). Then

yi = min(max(x;, i), u;), Vi=1,..,n.
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Projection

2
22
Py (zV) Pg ()
i e
o o — o
z® = Pg(z®)  p Pr(2®))

ex: X(l)
max(xc()l)7 h) = xél)

M) ) = x

min(x; ", to
Figure: Projection on a max(xM, 1) = x{V

cuboid. min(Xfl)7 u) =
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Projection

Example 2: projection on a ball.
Let K be described by

K= {XER”|”X—XcH < R},
where xc € R” and R > 0 are given.

For all x € R",

(x — x¢)

Projx(x) = xc + min (Hx — xclls R)M
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Projection

o

Figure: Projection on a ball.
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Projection

Example 3: cartesian product.

Let K be given by
K = K1 x Ky,

where Ki and K> are given non-empty closed and convex subsets
of R™ and R™.

Then for all x = (x1,x2) € Rmtm,

Proj,(x) = (ProjK1 (x1), Prosz(xz)).



Projected gradient method
[ ]

Method

Optimization problem. Consider

inf f(x), xe€K,

xER"
where f: R” — R is given and differentiable and K is a given
non-empty convex and closed subset of R”.

Numerical assumption: Projy(-) is easy to compute.
Gradient descent algorithm.

Input: xg € R", € > 0. Set
k =0.

While [|V£(x) | > e, do Main idea:
at iteration k, replace the search on the

half line {x + cudi|a > 0} used in
unconstrained optimization by a search
on

- Find a descent direction
d.
- Find ay > 0 such that
f(Xk + akdk) < f(Xk).
- Set xp41 = Xk + aydy. i
- Set k;k+1_ { Projy (xi + axdi) |ax > 0}.
N—— —

Output: x. =41 (k)



Projected gridoient method
Combination with penalty methods

Consider the problem

hi(x)= 0 Vie&,

inf f(x), subject to: )
gi(x)< 0 VieZ,

x€R"
where f: R” 5 R, h: R" — R™ and g: R" — R™ are given.

Idea: Eliminate inequality constraints by slack variables. An
equivalent formulation is

d(x)—y=0
inf f(x), subjectto:{ ()~

S y ek,
hi(x), Vi €&,
where: ®;(x) = (x) I © and
gi(x), Vi eI,

=0 Vie€
K={yerm| " 'e .
vi< 0 Viel



Projected gradient method
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Combination with penalty methods

Main idea: projection on K (a cuboid) is easy to compute.
Handle y € K with the projected gradient method.
Algorithm.
m At iteration k, the iterates x, € R", y, € R™, pux € R™, and
Ck are given.

m Solve (approximately) the penalty problem:

. Ck

nf Lo () 1= F() 4 e 00) = ) + [ 0(x) =y,
y€eR™
subject to: y € K,

with the projected gradient method.
Use (xk, yx) as a starting point.
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