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Penalty methods Projected gradient method

And to sum up the courses ...

Necessary conditions Sufficient conditions

Abstract formulation if K compact, f ∈ C 0(K)
(exist.) then at least one solution

if K closed,
f ∈ C 0(K), coercive

then at least one solution

Necessary conditions Sufficient conditions

No constraints if x local sol., if f ∈ C 2(K), ∇f (x) = 0,
K = Rd (opt.) f ∈ C 2(K) then, D2f (x) positive def.

D2f (x) is positive semi-def. then x local sol.

Affine f convex,
constraints x local sol. then KKT then KKT=global sol.

Non-linear f convex,
constraints x local sol., LICQ then KKT h affine, g convex,

then KKT=global sol.
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And to sum up the courses ...

Necessary conditions Sufficient conditions

Abstract formulation if K compact, f ∈ C 0(K)
(exist.) then at least one solution

if K closed,
f ∈ C 0(K), coercive

then at least one solution

Find a local solution

No constraints Gradient Descent

Affine Penalty methods
constraints

Non-linear
constraints
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Introduction

Aim of the lecture: a general presentation of one numerical
methods for constrained optimization.

Penalty methods ⇝ equality constraints

Projected gradient methods ⇝ inequality constraints

well suited if constraints projection is possible and easy to compute.

Reference:

Nocedal and Wright. Numerical optimization. Springer Science and Business
Media, 2006.

Boyd and Vandenberghe. Convex Optimization. Cambridge University Press,
2004.
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1 Penalty methods for constrained optimization
Quadratic penalization
Augmented Lagrangian
Lagrangian decomposition

2 Projected gradient method
Projection
Method
Combination with penalty methods
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Quadratic penalization

We consider in this section

inf
x∈Rn

f (x), subject to: h(x) = 0, (P)

where f : Rn → R and h : Rn → Rm are given and “smooth”.

A general difficulty: we need to cope with two general goals:

Minimizing f

Ensuring the feasibility of x .

When designing a numerical method, the question arises:
Given an iterate xk , should we look for xk+1 so that

f (xk+1) < f (xk) or ∥h(xk+1)∥ < ∥h(xk)∥ ?
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Quadratic penalization

Main idea: combining the two objectives into a single one.
Given a real number c ≥ 0, consider the penalty problem:

inf
x∈Rn

Qc(x) := f (x) +
c

2
∥h(x)∥2. (Pc)

A rough statement: if c is large, (P) and (Pc) are “almost”
equivalent.

Big advantage of the approach: numerical methods of
unconstrained optimization can be employed for solving (Pc).
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Quadratic penalization

Exercise.
Consider the problem:

inf
x∈R

x , subject to: x = 0.

1 What is the solution x̄ to the problem?

2 Calculate the solution xc to the corresponding penalized
problem Pc .

3 Verify that xc −→
c→+∞

x̄ .
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Quadratic penalization

Solution.

1 Obviously x̄ = 0, since 0 is the unique feasible point of the
problem.

2 Let c > 0. We have Qc(x) = x + c
2x

2 and ∇Qc(x) = 1 + cx .
Therefore,

∇Qc(x) = 0 ⇐⇒ x = −1

c
.

Since Qc is convex, xc := −1/c is the unique solution of (Pc).

3 Obviously
xc = −1/c −→

c→∞
0 = x̄ .
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Quadratic penalization
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Figure: Graph of Qc , for various values of c
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Quadratic penalization

Lemma 1

Let ck → ∞. Let (xk)k∈N be a sequence in Rn. Assume that

For all k ∈ N, xk is the solution to (Pck ).

The sequence (xk)k∈N converges, let x̄ denote the limit.

There exists x̃ such that h(x̃) = 0.

Then, x̄ is a solution to the original constrained problem (P).

Proof. Step 1. Let x be a feasible point (that is, h(x) = 0). Then,

Qck (x) = f (x) +
ck
2
∥h(x)∥2 = f (x).

In particular, Qck (x̃) = f (x̃).
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Quadratic penalization

Step 2: x̄ is feasible. For all k ∈ N, we have

ck∥h(xk)∥2 = Qck (xk)− f (xk)

≤ Qck (x̃)− f (xk) [Optimality of xk ]

= f (x̃)− f (xk). [Equality of Step 1]

Since f (xk) → f (x̄), the sequence (f (xk))k∈N is bounded.
Therefore, there exist M > 0 such that ck∥h(xk)∥2 ≤ M. Thus

∥h(xk)∥ ≤
√

M/ck , ∀k ∈ N.

Passing to the limit, we get ∥h(x̄)∥ ≤ 0. Thus x̄ is feasible.
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Quadratic penalization

Step 3. Optimality of x̄ . Let x be feasible. We have

f (xk) ≤ f (xk) + ck∥h(xk)∥2

= Qck (xk)

≤ Qck (x) [Optimality of xk ]

= f (x). [Equality of Step 1]

Passing to the limit, we get

f (x̄) ≤ f (x).

Thus x̄ is optimal.
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Quadratic penalization

The result of the lemma must be seen as an “ideal” situation.

Difficulties in practice:

The problem (Pc) may not have a solution, even if (P) has
a solution. Example:

inf
x∈R

x3, subject to: x = 0.

The sequence (xk)k∈N may not converge.

The problem (Pc) is hard to solve when c is large, it is likely
to be ill-conditioned (see next example).
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Quadratic penalization

Example. Consider:

inf
(x ,y)∈R2

1

2

(
x2 + (y − 1)2

)
, subject to: x = y .

Projection problem of the point (0, 1) on the line {(x , y) | y = x}.

Exercise. Verify the following statements.

Solution: x∗ = (0.5, 0.5).

Solution of Pc , the penalty function, is:(
xc
yc

)
=

1

1 + 2c

(
c

1 + c

)
.

There exists a constant M such that for all c ≥ 0,

∥(xc , yc)− (x̄ , ȳ)∥ ≤ M/c.
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Quadratic penalization

Solution.

1 ∇f (x , y) =

(
x

y − 1

)
. The function f is convex and thus, the global

solution of the unconstrainted version is (0, 1). With the constraints, we
aim at minimizing 1

2

(
2x2 − 2x + 1

)
, and the unique solution is obviously

x = 0.5.

2 Qc(x) =
1
2

(
x2 + (y − 1)2

)
+ c

2
(y − x)2 and

∇Qc(x , y) =

(
x − c(y − x)

y − 1 + c(y − x)

)
, and since Qc is convex, the unique

solution of Pc is:

(
xc
yc

)
=

1

1 + 2c

(
c

1 + c

)
.

3 lim
c→∞

(
xc
yc

)
= lim

c→∞
c

c(1/c+2)

(
1

1/c + 1

)
= 1

2

(
1
1

)
∥(xc , yc)− (0.5, 0.5)∥2 = 0.5

(1+2c)2
⇒ ∥(xc , yc)− (0.5, 0.5)∥ =

√
0.5

1+2c
≤ M

c
.

Yet, ∇2Q(x , y) =

(
1 + c −c
−c 1 + c

)
which is ill-conditioned for large c. It

yields difficulties with e.g. Newton algorithm (∇2Q · p = −∇Q) with
abrupt function changes.
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Quadratic penalization
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Figure: Graph of Qc , for c = 0.
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Quadratic penalization
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Quadratic penalization
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Quadratic penalization
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Quadratic penalization
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Penalty algorithm

General idea: increase the value of c progressively, to
mitigate the difficulty of minimizing Qc .
Algorithm:

1 Input: Choose c0 > 0, starting point x0 ∈ Rn.

2 For k = 1, ...,K − 1, do

Solve (Pck ) (e.g. with a gradient descent algorithm starting
from xk−1) and set xk the solution.
If xk is such that h(xk) = 0, stop.
Otherwise choose ck+1 > ck .

End for.

3 Output: xK .
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Penalty algorithm

Qc(x) = f (x) +
c

2
∥h(x)∥2

∇Qc(x) = ∇f (x) + c⟨h(x),∇h(x)⟩
= ∇L(x , ch(x))

ckh(xk) ≃ µ
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Augmented Lagrangian

Unlike the penalty method, with the augmented Lagrangian
method is not necessary to take c → ∞ in order to solve the
original constrained problem, avoiding ill-conditioning.
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Augmented Lagrangian

The two ideas of the augmented Lagrangian method:

1 Solving a penalty problem (like (Pc)) also yields an
approximation of the Lagrange multiplier.

2 We can “improve” the penalty function Qc with the
knowledge of that approximation.

Algorithm: at each iteration,

the penalty parameter is increased

the approximations xk of the solution and λk of the Lagrange
multiplier are improved.
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Augmented Lagrangian

Let c > 0. The augmented Lagrangian Lc : Rn × Rm → R is
defined by

Lc(x , µ) = f (x) + ⟨µ, h(x)⟩+ c

2
∥h(x)∥2.

∇Lc(x , µ) = ∇f (x) + ⟨µ,∇h(x)⟩+ ⟨ch(x),∇h(x)⟩
= ∇L(x , µ+ ch(x))

µk + ckh(xk) ≃ µ

h(xk) ≃
µ− µk

ck

µk+1 = µk + ckh(xk+1)
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Augmented Lagrangian

Lc(x , µ) = f (x) + ⟨µ, h(x)⟩+ c

2
∥h(x)∥2.

We have

Lc(x , µ) = L(x , µ) +
c

2
∥h(x)∥2

= Qc(x) + ⟨µ, h(x)⟩

= f (x) +
c

2
∥h(x) + µ

c
∥2 − ∥µ∥2

2c

For a fixed λ, Lc(·, µ) still serves as a penalty function. If xc,µ
minimizes Lc(x , µ) and if c is very large, then

f (xc,µ) is small
c
2∥h(x) +

µ
c ∥

2 is small → ∥h(x) + µ
c ∥ is very small

→ ∥h(x)∥ is very small.
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Augmented Lagrangian

The new penalty problem:

inf
x∈Rn

Lc(x , µ). (Pc,µ)

Lemma 2

Let x̄ be a local minimizer of (P). Under technical assumptions,
there exists µ̄ and c̄ ≥ 0 such that for all c > c̄ ,

the KKT conditions hold true

x̄ is a local solution to (Pc,µ̄).
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Reminders

Necessary conditions Sufficient conditions

Abstract formulation if K compact, f ∈ C 0(K)
(exist.) then at least one solution

if K closed,
f ∈ C 0(K), coercive

then at least one solution

Necessary conditions Sufficient conditions

No constraints if x local sol., if f ∈ C 2(K), ∇f (x) = 0,
K = Rd (opt.) f ∈ C 2(K) then, D2f (x) positive def.

D2f (x) is positive semi-def. then x local sol.

Affine f convex,
constraints x local sol. then KKT then KKT=global sol.

Non-linear f convex,
constraints x local sol., LICQ then KKT h affine, g convex,

then KKT=global sol.
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Augmented Lagrangian

The new penalty problem:

inf
x∈Rn

Lc(x , µ). (Pc,µ)

Lemma 3

Let x̄ be a local minimizer of (P). Under technical assumptions,
there exists µ̄ and c̄ ≥ 0 such that for all c > c̄ ,

the KKT conditions hold true

x̄ is a local solution to (Pc,µ̄).

Idea of proof. We have

∇Lc(x̄ , µ̄) = ∇L(x̄ , µ̄+ ch(x̄)) = ∇L(x̄ , µ̄) = 0.

∇2Lc(x̄ , µ̄) = ∇2L(x̄ , µ̄) + c⟨∇h(x̄),∇h(x̄)⟩

For c large enough, ∇2Lc(x̄ , µ̄) is positive definite.
Therefore, x̄ is a local solution.
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Augmented Lagrangian

Example 1. Consider infx∈R x − x2, subject to: x = 0.

Exercise.

Write the Lagrangian formulation and find the Lagrangian
multiplier.

Does KKT holds for x̄ = 0?

Write the augmented Lagrangian (Pc,µ̄) and show that x̄ is a
local solution to (Pc,µ̄) if c > c̄ .
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Augmented Lagrangian

Example 1. Consider infx∈R x − x2, subject to: x = 0.

Solution x̄ = 0.

Lagrangian L(x , µ) = x − x2 + µx . We have

∇L(x̄ , µ) = 1− 2x̄ + µ = 1 + µ =⇒ µ̄ = −1.

Augmented lagrangian:

Lc(x , µ) = x − x2 + µx +
c

2
x2 = (1 + µ)x +

(c
2
− 1

)
x2.

If c > c̄ := 2, Lc(·, µ) has a unique minimizer

xc,µ =
µ+ 1

2− c
=

µ− µ̄

2− c
.

In particular, xc,µ̄ = x̄ .



Penalty methods Projected gradient method

Augmented Lagrangian

Figure: Graph of Lc(·, µ), for c = 4 and various values of µ.
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Quadratic penalization

Example 2. Consider:

inf
(x ,y)∈R2

1

2

(
x2 + (y − 1)2

)
, subject to: x = y .

Projection problem of the point (0, 1) on the line {(x , y) | y = x}.

Exercise. Verify the following statements.

Solution: (x̄ , ȳ) = (0.5, 0.5), µ̄ = 0.5.

Solution of (Pc,µ) (aug. lagrangian):(
xc
yc

)
= 1

1+2c

(
c + µ

1 + c − µ

)
.

There exists a constant M such that for all c > 0,

∥(xc , yc)− (x̄ , ȳ)∥ ≤ M|µ̄− µ|/c .
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Quadratic penalization

Solution.

1. The function f is convex: the global solution of the unconstrained
version is given by stationarity:

∇f (x , y) =

(
0
0

)
which can be rewritten

(
x

y − 1

)
=

(
0
0

)
We find: x = 0 and y − 1 = 0 and thus, the global solution of the
unconstrained version is (0, 1).
With the constraints (y = x), we can replace y by x in the objective
function f : we aim at minimizing f (x) = 1

2

(
2x2 − 2x + 1

)
.

Again, f is convex so the global solution is given by the point
satisfying stationarity: ∇f (x) = 2x − 1 = 0. We find the unique
solution x̄ = 0.5.
To find the Lagrange multiplyer, we replace in the Lagrangian
gradient, x̄ and ȳ by 0.5:
L(x̄ , ȳ , µ̄) = f (x̄) + µ̄(ȳ − x̄), so

∇L(x̄ , ȳ , µ̄) = ∇f (x̄) + µ̄∇h(x̄ , ȳ) =

(
x̄ − µ̄

ȳ − 1 + µ̄

)
and by

stationarity ∇L(x̄ , ȳ , µ̄) =

(
0
0

)
implies that x̄ − µ̄ = 0 and

ȳ − 1 + µ̄ = 0. We find µ̄ = 0.5.
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Quadratic penalization
2.

Lc,µ(x , y) = f (x , y) +
c

2
h(x , y)2 + µh(x , y)

=
1

2

(
x2 + (y − 1)2

)
+

c

2
(y − x)2 + µ(y − x)

(can be rewritten 1
2

(
x2 + (y − 1)2

)
+ c

2
(x − y)2 + µ(x − y)) and

∇Lc,µ(x , y) =

(
x − c(y − x)− µ

y − 1 + c(y − x) + µ

)
, and since Lc,µ is convex, the

unique solution of (Pc,µ) is the solution of stationarity condition:

∇Lc,µ(x , y) =

(
x − c(y − x)− µ

y − 1 + c(y − x) + µ

)
=

(
0
0

)
It gives two equations: x − c(y − x)− µ = 0 and
y − 1 + c(y − x) + µ = 0 Adding the two together, we find
x + y − 1 = 0, and thus x = 1− y or y = 1− x .
In the first equation, we replace y by 1− x :
x − c(1− x − x)− µ = x(1 + 2c)− c − µ = 0, and thus, x = c+µ

1+2c
and in

the second one, we replace x by 1− y :
y − 1 + c(y − 1 + y) + µ = y(1 + 2c)− c − 1 + µ = 0, and thus,

y = 1+c−µ
1+2c

. So,

(
xc
yc

)
=

1

1 + 2c

(
c + µ

1 + c − µ

)
.
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Quadratic penalization

3. ∥(a, b)∥2 = a2 + b2 (for euclidean norm)

∥(xc , yc)− (x̄ , ȳ)∥2 = (
c + µ

1 + 2c
− x̄)2 + (

1 + c − µ

1 + 2c
− ȳ)2

= (
c + µ

1 + 2c
− 0.5)2 + (

1 + c − µ

1 + 2c
− 0.5)2

=
1

(1 + 2c)2
((c + µ− 0.5− c)2 + (1 + c − µ− 0.5− c)2)

=
1

(1 + 2c)2
((µ− 0.5)2 + (0.5− µ)2)

=
2(µ− 0.5)2

(1 + 2c)2

=
2(µ− µ̄)2

(1 + 2c)2

∥(xc , yc)− (0.5, 0.5)∥ =
√
2

1+2c
|µ− µ̄| ≤ M|µ−µ̄|

c
.
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Augmented Lagrangian
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Figure: Level-sets Lc(·, µ), for c = 1 and µ = 0.
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Augmented Lagrangian
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Figure: Level-sets Lc(·, µ), for c = 1 and µ = 0, 25.
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Augmented Lagrangian
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Figure: Level-sets Lc(·, µ), for c = 1 and µ = 0, 5.
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Augmented Lagrangian

Algorithm.

1 Input:

Initial point and multipliers (x0, µ0) ∈ Rn × Rm

Initial penalty parameter c0 > 0, initial tolerance ε0 > 0
Tolerance ε > 0.

2 Set k = 0.

3 While ∥DxL(xk , µk)∥ > ε and ∥h(xk)∥ > ε,

Find xk+1 such that ∥DxLck (xk+1, µk)∥ ≤ εk .
If ∥h(xk+1)∥ is small, set µk+1 = µk + ckh(xk+1). Reduce εk .
Otherwise, increase ck .
Set k = k + 1.

End while.

4 Output (xk , λk).
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Lagrangian decomposition

Main ideas of Lagrangian decomposition methods:

We take c = 0 in the augmented Lagrangian. At iterate k ,
given an approximation µk of the Lagrange multiplier, we solve

inf
x∈Rn

L(x , µk). (Px)

where µk is found with the following maximization

sup
µ∈Rm

L(x , µ)

Since ∇µL(x , µ) = h(x), this maximization is solved by
iterating with an ascent gradient step to approximate the
solution of h(x) = 0:

Given a solution xk+1, the Lagrange multiplier is updated by

µk+1 = µk + αh(xk+1),

where α > 0 → Uzawa’s algorithm.
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Lagrangian decomposition

Remarks.

Convergence of such methods can be established only under
convexity assumptions.

The stepsize α > 0 must in general be small enough to ensure
convergence. Instead of a fixed stepsize, one can use

λk+1 = λk + αkg(xk+1),

One may consider instead of the primal problem (P) the dual
problem

d∗ := sup
µ∈Rm

inf
x∈Rn

L(x , µ) (Pµk
)

and we have p∗ ≥ d∗.
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Lagrangian decomposition

Main advantage of Lagrangian decomposition: very often the
minimization of L can be “parallelized”.

Standard case: additive constraints.

Consider

inf
(x1,x2)∈X1×X2

f1(x1) + f2(x2), subject to: h1(x1) + h2(x2) = d ,

where f1, f2, X1, X2, h1, h2, and d are given.

Lagrangian:

L(x1, x2, µ) = f1(x1) + f2(x2) + ⟨µ, h1(x1) + h2(x2)− d⟩

=
[
f1(x1) + ⟨µ, h1(x1)⟩︸ ︷︷ ︸

=:L1(x1,µ)

]
+
[
f2(x2) + ⟨µ, h2x2⟩︸ ︷︷ ︸

=:L2(x2,µ)

]
− ⟨µ, d⟩.
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Lagrangian decomposition

Given µ, the minimization of L(·, λ) is decomposed into two
subproblems:

inf
x1∈Rn1

L1(x1, λ) and inf
x2∈Rn2

L2(x2, λ),

which can be solved independently. Very often the two
subproblems are much easier to solve than the original problem.

Remark. Straightforward generalization to the case

inf
x1,...,xK

∈Rn1×...RnK

f1(x1) + . . .+ fK (xK ), s.t.: h1(x1) + . . .+ hK (xK ) = K .

→ Decomposition in K subproblems (at each iteration).
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Lagrangian decomposition

1. Application 1: time decomposition.

Two production units, with two independent production
processes represented by the variables
Problem:

inf
x∈R2

− x1
1 + x1

− x2
4 + x2

, s.t.
{

x1 + x2 = d
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Lagrangian decomposition

L(x , µ) = − x1
1 + x1

− x2
4 + x2

+ µ(x1 + x2 − d).

If x1 + x2 > d , the engine must be rented for a longer time: the
cost associated to constraints is increased. The incentive µk is too
small, it must be increased.

If x1 + x2 < d , the cost associated to constraints is decreased. The
incentive µk is too big, it must be decreased.
This is consistent with the formula

µk+1 = µk + αk(x1 + x2 − d) (4.1)
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Lagrangian decomposition

Application 2: stochastic decomposition.

A production process is decomposed over two periods.
A random event with two outcomes ω1 and ω2, with
probabilities p and (1− p), arises inbetween.

Optimization variables:

x1: decisions taken if outcome ω1 arises
x2: decisions taken if outcome ω2 arises
y : decisions taken before the random event.

Example: purchase of gas y on a day-ahead market (that is,
on a given day for the next one).
Random event: temperature, which impacts consumption.



Penalty methods Projected gradient method

Lagrangian decomposition

Abstract problem:

inf
(x1,x2,y)
(x1,y)∈X
(x2,y)∈X

pf (x1, y , ω1) + (1− p)f (x2, y , ω2).

Equivalent problem (with non-anticipativity constraint):

inf
(x1,x2,y1,y2)
(x1,y1)∈X
(x2,y2)∈X

pf (x1, y1, ω1) + (1− p)f (x2, y2, ω2), s.t. y2 − y1 = 0.

Independent (w.r.t. randomness) sub-problems:

inf
(x1,y1)∈X1

pf1(x1, y1, ω1) + µky1, inf
(x2,y2)∈X2

(1− p)f2(x2, y2, ω2)− µky2.



Penalty methods Projected gradient method

1 Penalty methods for constrained optimization
Quadratic penalization
Augmented Lagrangian
Lagrangian decomposition

2 Projected gradient method
Projection
Method
Combination with penalty methods



Penalty methods Projected gradient method

Projection

Idea: Apply steepest descent method but project the path
onto the constraints. The projected gradient method uses a
mapping called projection defined below.

Lemma 4

Let K ⊂ Rn be a non-empty, convex, and closed set. For all
x0 ∈ Rn, there exists a unique solution to the problem

inf
x∈Rn

∥x − x0∥2, subject to: x ∈ K .

It is called projection of x0 on K , and denoted ProjK (x0).

Remark. The projection depends on the chosen norm ∥ · ∥.
For simplicity, we consider the Euclidean norm.
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Projection

Example 1: projection on a cuboid.
Let K be described by

K =
{
x ∈ Rn | ℓi ≤ xi ≤ ui

}
,

where the coefficients ℓ1,...,ℓn ∈ R ∪ {−∞} and
u1,...,un ∈ R ∪ {+∞} are given.

Let x ∈ Rn, let y = ProjK (x). Then

yi = min(max(xi , ℓi ), ui ), ∀i = 1, ..., n.
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Projection

Figure: Projection on a
cuboid.

ex: x(1)

max(x
(1)
0 , l0) = x

(1)
0

min(x
(1)
0 , u0) = x

(1)
0

max(x
(1)
1 , l1) = x

(1)
1

min(x
(1)
1 , u1) = u1
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Projection

Example 2: projection on a ball.
Let K be described by

K =
{
x ∈ Rn | ∥x − xC∥ ≤ R

}
,

where xC ∈ Rn and R ≥ 0 are given.

For all x ∈ Rn,

ProjK (x) = xC +min
(
∥x − xC∥,R

) (x − xC )

∥x − xC∥
.



Penalty methods Projected gradient method

Projection

Figure: Projection on a ball.
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Projection

Example 3: cartesian product.
Let K be given by

K = K1 × K2,

where K1 and K2 are given non-empty closed and convex subsets
of Rn1 and Rn2 .

Then for all x = (x1, x2) ∈ Rn1+n2 ,

ProjK (x) =
(
ProjK1

(x1),ProjK2
(x2)

)
.
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Method

Optimization problem. Consider

inf
x∈Rn

f (x), x ∈ K ,

where f : Rn → R is given and differentiable and K is a given
non-empty convex and closed subset of Rn.

Numerical assumption: ProjK (·) is easy to compute.
Gradient descent algorithm.

1 Input: x0 ∈ Rn, ε > 0. Set
k = 0.

2 While ∥∇f (xk )∥ ≥ ε, do

- Find a descent direction
dk .

- Find αk > 0 such that
f (xk + αkdk ) < f (xk ).

- Set xk+1 = xk + αkdk .
- Set k = k + 1.

3 Output: xk .

Main idea:
at iteration k, replace the search on the
half line

{
xk + αkdk |α ≥ 0

}
used in

unconstrained optimization by a search
on {

ProjK
(
xk + αkdk

)︸ ︷︷ ︸
=:xk+1(αk )

|αk ≥ 0
}
.
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Combination with penalty methods

Consider the problem

inf
x∈Rn

f (x), subject to:

{
hi (x) = 0 ∀i ∈ E ,
gi (x) ≤ 0 ∀i ∈ I,

where f : Rn → R, h : Rn → Rm1
and g : Rn → Rm2 are given.

Idea: Eliminate inequality constraints by slack variables. An
equivalent formulation is

inf
x∈Rn

y∈Rm

f (x), subject to:

{
Φ(x)− y = 0

y ∈ K ,

where: Φi (x) =

{
hi (x), ∀i ∈ E ,
gi (x), ∀i ∈ I,

and

K =

{
y ∈ Rm |

{
yi = 0 ∀i ∈ E
yi ≤ 0 ∀i ∈ I

}
.
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Combination with penalty methods

Main idea: projection on K (a cuboid) is easy to compute.
Handle y ∈ K with the projected gradient method.

Algorithm.

At iteration k, the iterates xk ∈ Rn, yk ∈ Rm, µk ∈ Rm, and
ck are given.

Solve (approximately) the penalty problem:

inf
x∈Rn

y∈Rm

Lck (x , y , µk) := f (x) + ⟨µk ,Φ(x)− y⟩+ ck
2
∥Φ(x)− y∥2,

subject to: y ∈ K ,

with the projected gradient method.
Use (xk , yk) as a starting point.


	Penalty methods for constrained optimization
	Quadratic penalization
	Augmented Lagrangian
	Lagrangian decomposition

	Projected gradient method
	Projection
	Method
	Combination with penalty methods


