Continuous optimization ENT305A

Elise Grosjean

Ensta-Paris Institut Polytechnique de Paris September 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Organisation

Organization:

- Class 1: lecture
- Class 2: lecture (1h 30) + programming exercises (2h)
- Class 3: lecture (1h 30) + programming exercises (2h)
- Class 4: programming exercises
- Class 5: programming exercise (1h 30) + exam (2h).

Contact me:

elise.grosjean@ensta-paris.fr

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Main objectives

Skills to be developed:

- Modelling of practical situations as an *optimization problem*.
- Numerical resolution of such problems with the help of AMPL (A Mathematical Programming Language) and python.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Basic knowledge in optimization: theory and numerics.

Pre-requisite:

- Programming: little (python)
- Maths: little (Topology & Differential calculus).

Main objectives

Skills to be developed:

- Modelling of practical situations as an *optimization problem*.
- Numerical resolution of such problems with the help of AMPL (A Mathematical Programming Language) and python.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Basic knowledge in optimization: theory and numerics.

Pre-requisite:

- Programming: little (python)
- Maths: little (Topology & Differential calculus).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1 General introduction

What is an optimization problem?

- Classes of problems
- Existence of a solution
- Derivatives

2 Methods for unconstrained optimization

- Optimality conditions
- Gradient methods
- Newton's method

3 Optimality conditions for constrained problems

- Linear constraints
- Non-linear constraints
- Sensitivity analysis

Infimum (and supremum)

Let $K \subset \mathbb{R}^d$ and $f : K \to \mathbb{R}$ be a numerical function. By construction of real numbers, the set $\{f(x)|x \in K\}$ has an infimum $\alpha = \inf_{x \in K} f(x)$. It satisfies: $\alpha \leq f(x)$ for all $x \in K$. Remark: $\alpha = -\infty$ is a possible value. Characterisation of infimum:

・ロト・西ト・西ト・西ト・日・ シック

Definition 1

An **optimization problem** is a mathematical expression of the form:

$$\inf_{x\in\mathcal{D}}f(x), \quad \text{subject to: } x\in K, \tag{P}$$

where:

• \mathcal{D} is a set, called **domain** of f

• $f: \mathcal{D} \to \mathbb{R}$ is called **cost function** (or **objective** function)

• $K \subseteq \mathcal{D}$ is called **feasible set**.

In this class: $\mathcal{D} = \mathbb{R}^n$. Unconstrained optimization: $\mathcal{D} = K = \mathbb{R}^n$.

Straightforward adaptation of all results of the class to **maximization** problems, replacing f by -f.

Abbreviation: "subject to" \rightsquigarrow "s.t.".

General introduction Methods for unconstrained optim. Optimality conditions

What is an optimization problem?

$$f: x \to x^2, x \in [-5, 5]$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Definition 2

- A point x is called **feasible** if $x \in K$.
- A feasible point \bar{x} is called **(global) solution** (to problem P) if

 $f(x) \ge f(\bar{x})$, for all $x \in K$.

If x̄ is a global solution, then the real number f(x̄) is called value of the optimization problem, it is denoted val(P)(val(P) = α).

Example. The point $x = \pi$ is the solution of the problem

$$\inf_{x\in\mathbb{R}}\cos(x), \quad x\in[0,2\pi].$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Remarks.

An optimization problem may **not** have a solution. *Examples*:

$$\inf_{x\in\mathbb{R}}e^x,\qquad (P_1)$$

$$\inf_{x\in\mathbb{R}}x^3. \tag{P_2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The concept of value of an optimization problem can also be defined whether the problem has a solution or not, as an element of R
= R ∪ {-∞,∞}. In particular:

$$\operatorname{val}(P_1) = 0, \quad \operatorname{val}(P_2) = -\infty.$$

Definition 3

Let $\bar{x} \in K$. We call \bar{x} a **local solution** to (*P*) if there exists $\varepsilon > 0$ such that the following holds true: for all $x \in K$,

 $||x - \bar{x}|| \le \varepsilon \Longrightarrow f(x) \ge f(\bar{x}).$

Example: $\inf_{x \in \mathbb{R}} - x^2$, s.t. $x \in [-1, 2]$. Local solutions: -1 and 2.

Remarks.

- A global solution is also a local solution.
- The notion of local optimality does not depend on the norm, if K is a subset of a finite dimensional vector space.

Notation.

Let $\overline{B}(\overline{x},\varepsilon)$ denote the closed ball of center \overline{x} and radius ε .

Equivalent definition.

A feasible point \bar{x} is a local solution to (*P*) if and only if there exists $\varepsilon > 0$ such that \bar{x} is a **global** solution to the following **localized** problem:

$$\inf_{x\in\mathbb{R}^n}f(x),\quad x\in {\cal K}\cap\bar{B}(\bar{x},\varepsilon).$$

Constraints.

Most of the time, the feasible set K is described by

$$\mathcal{K} = \left\{ x \in \mathbb{R}^n \left| egin{array}{c} h_i(x) = 0, & orall i \in \mathcal{E} \\ g_j(x) \leq 0, & orall j \in \mathcal{I} \end{array}
ight\},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where $h \colon \mathbb{R}^n \to \mathbb{R}^{m_1}$, $g \colon \mathbb{R}^n \to \mathbb{R}^{m_2}$.

We call the expressions

- $h_i(x) = 0$: equality constraint
- $g_j(x) \le 0$: inequality constraint.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1 General introduction

- What is an optimization problem?
- Classes of problems
- Existence of a solution
- Derivatives

2 Methods for unconstrained optimization

- Optimality conditions
- Gradient methods
- Newton's method

3 Optimality conditions for constrained problems

- Linear constraints
- Non-linear constraints
- Sensitivity analysis

From the point of view of **applications**, one can distinguish four classes of optimization problems.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- **1** Economical problems
- 2 Physical problems
- 3 Inverse problems
- 4 Learning problems.

1. Economical problems.

Any practical situation involving

- a cost to be minimized, some revenue or performance index to be maximized
- operational decisions (production level in thermal power plants, amount of water flowing out from a hydropower plant, beginning and end of the maintenance of a nuclear power plant, etc.)
- constraints **bounding** the decisions (which are often non-negative!)
- physical constraints ("total production=demand", "variation of stock= input - output",...).

2. Physical problems.

Some equilibrium problems in **physics** can be formulated as optimization problems, involving an energy to be minimized.

- Mechanical structures
- Electricity networks
- Gas networks

Some similar problems arise in economics and game theory:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Cournot models with competing firms
- Traffic models on road networks.

3. Inverse problems

Context. A variable x must be identified, with the help of another variable y, related to x via a relation y = F(x).

Examples:

- the epicenter x of an earthquake, given seismic measurements y.
- localization x of a crack in a mechanical structure, given displacements measurements y provided by captors
- temperature in the core of a nuclear plant, given external temperature measurements

The equation y = F(x) (with unknown x)...

- may not have a solution (because of inaccurate measurements)
- may have several solutions (too few measurements).

Optimization is the solution! Consider

 $\inf_{x\in\mathcal{D}}\|y-F(x)\|^2, \quad \text{subject to: } x\in K,$

where the constraints may model a priori knowledge on x.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1 General introduction

- What is an optimization problem?
- Classes of problems
- Existence of a solution
- Derivatives

2 Methods for unconstrained optimization

- Optimality conditions
- Gradient methods
- Newton's method

3 Optimality conditions for constrained problems

- Linear constraints
- Non-linear constraints
- Sensitivity analysis

Theorem 4 (existence of extreme value (Weierstrass))

Assume the following:

- K is non-empty and compact (i.e. closed and bounded)
- f is continuous on K.

Then the optimization problem (P) has $(at \ least)$ one solution.

Remarks. If $K = \{x \in \mathbb{R}^n | h_i(x) = 0, \forall i \in \mathcal{E}, g_j(x) \le 0, \forall j \in \mathcal{I}\}$, where h_i, g_j are continuous, then K is closed. In practical exercises, it is not necessary to justify the continuity of h_i or g_j .

Definition 5

We say that $f : \mathbb{R}^d \to \overline{\mathbb{R}}$ is **coercive** if the following holds: for any sequence $(x_k)_{k \in \mathbb{N}}$ in \mathbb{R}^d ,

$$||x_k|| \to \infty \Longrightarrow f(x_k) \to +\infty.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Remark. The definition is independent of the norm.

General introduction Methods for unconstrained optim. Optimality conditions

Existence of a solution

Exercise. Consider

$$f:(x,y)\in\mathbb{R}^2\mapsto x^4-2xy+2y^2.$$

Prove that f is coercive on \mathbb{R}^2 .

Solution. We have $x^4 \ge 2x^2 - 1$, since

$$0 \le (x^2 - 1)^2 = x^4 - 2x^2 + 1.$$

Therefore

$$egin{aligned} f(x,y) &\geq 2x^2 - 1 - 2xy + 2y^2 \ &= (x^2 + y^2) - 1 + (x - y)^2 \ &\geq \|(x,y)\|^2 - 1 \xrightarrow[\|(x,y)\| o \infty]{} \infty, \end{aligned}$$

where $\|\cdot\|$ denotes the Euclidean norm. Thus *f* is coercive.

・ロト・西ト・ヨト ・ヨー うへの

Lemma 6

Assume the following:

- K is non-empty and closed
- f is continuous on K
- f is coercive on K.

Then the optimization problem (P) has $(at \ least)$ one solution.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Elements of proof.

Fix $x_0 \in K$.

If f is coercive, then f goes large when x moves away from x_0 , thus there exists a radius R_{x_0} such that for all x located outside the ball B centered on x_0 of radius R_{x_0} , $f(x) \ge f(x_0)$.

By Weierstrass extreme value theorem, there is a global minimizer x^* on the closed ball B.

 x^* being minimizer within a ball, we have $f(x^*) \le f(x)$ for any x in B.

In particular for x_0 , thus $f(x^*) \le f(x)$, for all $||x - x_0|| \ge R_{x_0}$. So x^* is a global minimum.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1 General introduction

- What is an optimization problem?
- Classes of problems
- Existence of a solution
- Derivatives

2 Methods for unconstrained optimization

- Optimality conditions
- Gradient methods
- Newton's method

3 Optimality conditions for constrained problems

- Linear constraints
- Non-linear constraints
- Sensitivity analysis

Definition 7

A function $F : \mathbb{R}^n \to \mathbb{R}^m$ is called **differentiable** at \bar{x} if for all i = 1, ..., m, for all j = 1, ..., n, the function

$x \in \mathbb{R} \mapsto F_i(\bar{x}_1, ..., \bar{x}_{j-1}, x, \bar{x}_{j+1}, ...) \in \mathbb{R}$

is differentiable. Its derivative at \bar{x}_j is called **partial derivative** of F, it is denoted $\frac{\partial F_i}{\partial x_i}(\bar{x})$.

The matrix

$$DF(\bar{x}) = \left(\frac{\partial F_i}{\partial x_j}(\bar{x})\right)_{\substack{i=1,\dots,m\\j=1,\dots,n}} \in \mathbb{R}^{m \times n}$$

is called Jacobian matrix.

- The function F is said to be continuously differentiable if the Jacobian $DF: x \in \mathbb{R}^n \to \mathbb{R}^{m \times n}$ is continuous.
- If F is continuously differentiable, then we have the first order Taylor expansion

 $F(x + \delta x) = F(x) + DF(x)\delta x + o(\|\delta x\|).$

Chain rule. Let F: ℝⁿ → ℝ^m and let G: ℝ^p → ℝⁿ be continuously differentiable functions. Let H = F ∘ G (that is, H(x) = F(G(x))). Then

DH(x) = DF(G(x))DG(x), for all $x \in \mathbb{R}^p$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition 8

Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable at $x \in \mathbb{R}^n$. We call **gradient** of f (at x) the column vector:

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(x) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x) \end{pmatrix} = Df(x)^\top.$$

▲□▶▲□▶▲□▶▲□▶ □ のQの

Definition 9

The function $F : \mathbb{R}^n \to \mathbb{R}^m$ is said to be **twice differentiable** if it is differentiable and DF is differentiable.

We denote:
$$\frac{\partial^2 F_i}{\partial x_j \partial x_k}(x) = \frac{\partial}{\partial x_j} \left(\frac{\partial F}{\partial x_k} \right)(x)$$
.

If m = 1, the matrix

$$D^{2}F(x) = \left(\frac{\partial^{2}F}{\partial x_{j}\partial x_{k}}(x)\right)_{\substack{j=1,\dots,n\\k=1,\dots,n}}$$

is called **Hessian** matrix. It is symmetric if F is twice continuously differentiable.

・ロト・西ト・田・・田・ ひゃぐ

Exercise.

Calculate the gradient and the Hessian of the function

$$f: x \in \mathbb{R}^n \mapsto \frac{1}{2} \langle x, Ax \rangle + \langle b, x \rangle,$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

where $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$.

Solution. We have

$$f(x) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_i x_j + \sum_{i=1}^{n} b_i x_i.$$

Therefore,

$$egin{aligned} &rac{\partial f}{\partial x_k}(x) = rac{1}{2}\sum_{j=1}^n A_{kj}x_j + rac{1}{2}\sum_{i=1}^n A_{ik}x_i + b_k\ &= rac{1}{2}(Ax)_k + rac{1}{2}(A^ op x)_k + b_k. \end{aligned}$$

Therefore,

$$abla f(x) = rac{1}{2}(A + ar{A}^{ op})x + b.$$

Hessian: $D^2 f(x) = rac{1}{2}(A + A^{ op}).$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1 General introduction

- What is an optimization problem?
- Classes of problems
- Existence of a solution
- Derivatives

2 Methods for unconstrained optimization

Optimality conditions

- Gradient methods
- Newton's method

3 Optimality conditions for constrained problems

- Linear constraints
- Non-linear constraints
- Sensitivity analysis

Optimality conditions

Let us fix a continuously differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ for the whole section. Let us consider

 $\inf_{x\in\mathbb{R}^n}f(x) \tag{P}$

The function f is said to be **stationary** at $x \in \mathbb{R}^n$ if $\nabla f(x) = 0$.

Theorem 10 (Necessary optimality condition)

Let $\bar{x} \in \mathbb{R}^n$ be a local solution of (P). Then, f is stationary at \bar{x} .

Remark. Stationarity is only a necessary condition!

Optimality conditions

Theorem 11

Assume that f is twice continuously differentiable. Let \bar{x} be a stationary point.

Necessary condition.
 If x̄ is a local solution of (P), then D²f(x̄) is positive semi-definite, that is to say,

$$\langle h, D^2 f(\bar{x})h \rangle \geq 0$$
, for all $h \in \mathbb{R}^n$.

Sufficient condition.
 If D²f(x̄) is positive definite, that is to say if

$$\langle h, D^2 f(\bar{x})h
angle > 0, \quad \textit{for all } h \in \mathbb{R}^n ackslash \{0\} \;,$$

then \bar{x} is a local solution of (P).

Definition 12

The function f is said to be convex if

 $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y),$

for all x and $y \in \mathbb{R}^n$ and for all $\lambda \in [0, 1]$.

Theorem 13

The function f is convex if and only if

 $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle,$

for all x and $y \in \mathbb{R}^n$.

If f is twice differentiable, then f is convex if and only if $D^2f(x)$ is symmetric **positive semi-definite** for all $x \in \mathbb{R}^n$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Theorem 14

Assume that f is convex. Let \bar{x} be a stationary point of f. Then it is a global solution of (P).

Proof. For all $x \in \mathbb{R}^n$, we have

 $f(x) \ge f(\bar{x}) + \langle \nabla f(\bar{x}), x - \bar{x} \rangle = f(\bar{x}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Exercise.

Let $A \in \mathbb{R}^{n \times n}$ be symmetric positive definite and let $b \in \mathbb{R}^n$. Let

$$f: x \in \mathbb{R}^n \mapsto \frac{1}{2} \langle x, Ax \rangle + \langle b, x \rangle.$$

Prove that

 $\inf_{x\in\mathbb{R}^n}f(x)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

has a unique solution.

Solution.

- We have ∇f(x) = Ax + b and ∇²f(x) = A. Since A is symmetric positive definite, thus symmetric positive semi-definite, the function f is convex.
- For a convex function, a point is a solution if and only if it is a stationary point. Thus it suffices to prove the existence and uniqueness of a stationary point.

We have

x is stationary
$$\iff \nabla f(x) = 0$$

 $\iff Ax + b = 0$
 $\iff x = -A^{-1}b.$

Therefore there is a unique stationary point, which concludes the proof.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1 General introduction

- What is an optimization problem?
- Classes of problems
- Existence of a solution
- Derivatives

2 Methods for unconstrained optimization

- Optimality conditions
- Gradient methods
- Newton's method

3 Optimality conditions for constrained problems

- Linear constraints
- Non-linear constraints
- Sensitivity analysis

Our goal: solving numerically the problem

$$\inf_{\mathbf{x}\in\mathbb{R}^n}f(\mathbf{x}).\tag{P}$$

General idea: to compute a sequence $(x_k)_{k \in \mathbb{N}}$ such that

 $f(x_{k+1}) \leq f(x_k), \quad \forall k \in \mathbb{N},$

the inequality being strict if $\nabla f(x_k) \neq 0$. \rightarrow **Iterative** method. How to compute x_{k+1} ?

Our goal: solving numerically the problem

$$\inf_{\mathbf{x}\in\mathbb{R}^n}f(\mathbf{x}).\tag{P}$$

General idea: to compute a sequence $(x_k)_{k \in \mathbb{N}}$ such that

 $f(x_{k+1}) \leq f(x_k), \quad \forall k \in \mathbb{N},$

the inequality being strict if $\nabla f(x_k) \neq 0$. \rightarrow **Iterative** method. How to compute x_{k+1} ?

Main idea of gradient methods.

Let $x_k \in \mathbb{R}^n$. Let d_k be a descent direction at x_k . Let $\alpha > 0$. Then

$$f(x_k + \alpha d_k) = f(x_k) + \alpha \underbrace{\langle \nabla f(x_k), d_k \rangle}_{<0} + o(\alpha).$$

Therefore, if α is small enough,

 $f(x_k + \alpha d_k) < f(x_k).$

We can set

 $x_{k+1} = x_k + \alpha d_k.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition 15

Let $x \in \mathbb{R}^n$ and let $d \in \mathbb{R}^n$. The vector d is called **descent** direction if

 $\langle \nabla f(x), d \rangle < 0.$

Remark. If $\nabla f(x) \neq 0$, then $d = -\nabla f(x)$ is a descent direction. Indeed,

$$\langle
abla f(x), d
angle = - \langle
abla f(x),
abla f(x)
angle = - \|
abla f(x) \|^2 < 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Gradient descent algorithm.

1 Input:
$$x_0 \in \mathbb{R}^n$$
, $\varepsilon > 0$.

- 2 Set *k* = 0.
- 3 While $\|\nabla f(x_k)\| \ge \varepsilon$, do
 - (a) Find a descent direction d_k .
 - (b) Find $\alpha_k > 0$ such that $f(x_k + \alpha_k d_k) < f(x_k)$.

(c) Set
$$x_{k+1} = x_k + \alpha_k d_k$$
.

(d) Set
$$k = k + 1$$
.

4 Output: x_k .

Remark. Step (b) is crucial; it is called **line search**. The real α_k is called **stepsize**. Exercice: Code the gradient descent algorithm

On the choice of α_k .

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

On the choice of α_k .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

On the choice of α_k .

On the choice of α_k .

Let us fix $x_k \in \mathbb{R}^n$. Let us define

 $\phi_k \colon \alpha \in \mathbb{R} \mapsto f(x_k + \alpha d_k).$

The condition $f(x_k + \alpha_k d_k) < f(x_k)$ is equivalent to

 $\phi_k(\alpha_k) < \phi_k(0).$

A natural idea: define α_k as a solution to

 $\inf_{\alpha\geq 0}\phi_k(\alpha).$

Minimizing ϕ_k would take too much time! A **compromise** must be found between simplicity of computation and quality of α .

Observation. Recall that $\phi_k(\alpha) = f(x_k + \alpha d_k)$. We have

$$\phi_k'(\alpha) = \langle \nabla f(x_k + \alpha d_k), d_k \rangle.$$

In particular, since d_k is a descent direction,

$$\phi_k'(\mathbf{0}) = \langle \nabla f(x_k), d_k \rangle < \mathbf{0}.$$

Definition 16

Let us fix $0 < c_1 < 1$. We say that α satisfies **Armijo's rule** if

 $\phi_k(\alpha) \leq \phi_k(0) + c_1 \phi'_k(0) \alpha.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

General introduction Methods for unconstrained optim. Optimality conditions

Gradient methods

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Gradient methods

Backstepping algorithm for Armijo's rule

1 Input: $c_1 \in (0, 1)$, $\beta > 0$, and $\gamma \in (0, 1)$.

```
2 Set \alpha = \beta.
```

3 While α does not satisfy Armijo's rule,

• Set
$$\alpha = \gamma \alpha$$
.

4 Output α .

Definition 17

Let $0 < c_1 < c_2 < 1$. We say that $\alpha > 0$ satisfies **Wolfe's rule** if

 $\phi_k(lpha) < \phi_k(0) + c_1 \phi_k'(0) lpha \quad \text{and} \quad \phi_k'(lpha) \ge c_2 \phi'(0).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

General introduction Methods for unconstrained optim. Optimality conditions

Gradient methods

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Bisection method for Wolfe's rule

1 Input:
$$c_1 \in (0, 1)$$
, $c_2 \in (c_1, 1)$, $\beta > 0$, $\alpha_{min}, \alpha_{max}$.

2 Set $\alpha = \beta$.

While Wolfe's rule not satified:

1 if α does not satisfy Armijo's rule :

Set
$$\alpha_{max} = \alpha$$

$$\alpha = 0.5(\alpha_{\min} + \alpha_{\max})$$

2 if α satisfies Armijo's rule and $\phi'_k(\alpha) < c2\phi'_k(0)$, do

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Set
$$\alpha_{\min} = \alpha$$

$$\alpha = 0.5(\alpha_{min} + \alpha_{max})$$

3 Output: α .

General comments on theoretical results from literature.

- The algorithms for the computation of stepsizes satisfying Armijo and Wolfe's rules converge in finitely many iterations (under non-restrictive assumptions).
- Without convexity assumption on f, very little can be said about the convergence of the sequence (x_k)_{k∈ℕ}. Typical results ensure that any accumulation point is stationary.
- In practice: (x_k)_{k∈ℕ} "usually" converges to a local solution. Thus a good initialization (that is the choice of x₀) is crucial.
- In general, **slow** convergence.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1 General introduction

- What is an optimization problem?
- Classes of problems
- Existence of a solution
- Derivatives

2 Methods for unconstrained optimization

- Optimality conditions
- Gradient methods
- Newton's method

3 Optimality conditions for constrained problems

- Linear constraints
- Non-linear constraints
- Sensitivity analysis

Main idea.

Originally, Newton's method aims at solving non-linear equations of the form

F(x)=0,

where $F : \mathbb{R}^n \to \mathbb{R}^n$ is a given continuously differentiable function. It is an iterative method, generating a sequence $(x_k)_{k \in \mathbb{N}}$. Given x_k , we have

$$F(x) \approx F(x_k) + DF(x_k)(x - x_k).$$

Thus we look x_{k+1} as the solution to the linear equation

$$F(x_k) + DF(x_k)(x - x_k) = 0$$

that is, $x_{k+1} = x_k - DF(x_k)^{-1}F(x_k)$.

・ロト・西ト・山田・山田・山口・

Remarks.

- If there exists x̄ such that F(x̄) = 0 and DF(x̄) is regular, then for x₀ close enough to x̄, the sequence (x_k)_{k∈ℕ} is well-posed and converges "quickly" to x̄.
- On the other hand, if x₀ is far away from x
 x, there is no guaranty of convergence.

Back to problem (P). Assume that f is continuously twice differentiable. Apply Newton's method with $F(x) = \nabla f(x)$ so as to solve $\nabla f(x) = 0$. Update formula:

$$x_{k+1} = x_k - D^2 f(x_k)^{-1} \nabla f(x_k).$$

The difficulties mentioned above are still relevant.

Optimization with Newton's method.

Newton's formula can be written in the form:

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k,$$

where

$$\alpha_k = 1$$
 and $d_k = -D^2 f(x_k)^{-1} \nabla f(x_k)$.

 If D²f(x_k) is positive definite (and ∇f(x_k) ≠ 0), then D²f(x_k)⁻¹ is also positive definite, and therefore d_k is descent direction:

$$\langle \nabla f(x_k), d_k \rangle = -\langle \nabla f(x_k), D^2 f(x_k)^{-1} \nabla f(x_k) \rangle < 0.$$

Globalised Newton's method.

1 Input: $x_0 \in \mathbb{R}^n$, $\varepsilon > 0$, a linesearch rule (Armijo, Wolfe,...).

2 Set
$$k = 0$$
.

3 While ||∇f(x_k)|| ≥ ε, do
(a) If -D²f(x_k)⁻¹∇f(x_k) is computable and is a descent direction, set d_k = -D²f(x_k)⁻¹∇f(x_k), otherwise set d_k = -∇f(x_k).
(b) If α = 1 satisfies the linesearch rule, then set α_k = 1. Otherwise, find α_k with an appropriate method.
(c) Set x_{k+1} = x_k + α_kd_k.
(d) Set k = k + 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

4 Output: x_k .

Comments.

- Under non-restrictive assumptions, the globalized method converges, whatever the initial condition. Convergence is fast.
- The numerical computation of D²f(x_k) may be very time consuming and may generate storage issues because of n² figures in general).
- Quasi-Newton methods construct a sequence of positive definite matrices H_k such that $H_k \approx D^2 f(x_k)^{-1}$. The matrix H_k can be stored efficiently (with O(n) figures). Then $d_k = -H_k \nabla f(x_k)$ is a descent direction. Good speed of convergence is achieved. \rightarrow The ideal compromise!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1 General introduction

- What is an optimization problem?
- Classes of problems
- Existence of a solution
- Derivatives

2 Methods for unconstrained optimization

- Optimality conditions
- Gradient methods
- Newton's method

3 Optimality conditions for constrained problems

- Linear constraints
- Non-linear constraints
- Sensitivity analysis

Linear equality constraints

We investigate in this section the problem

$$\inf_{x \in \mathbb{R}^n} f(x), \quad \text{s.t.} \quad \begin{cases} h_i(x) = 0, \quad \forall i \in \mathcal{E} \\ g_j(x) \le 0, \quad \forall j \in \mathcal{I}. \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let x ∈ ℝⁿ be feasible. Let j ∈ I. We say that
 the inequality constraint j is active if g_j(x) = 0
 the inequality constraint j is inactive if g_j(x) < 0.

• *Remark*. All results of the section are true if $\mathcal{E} = \emptyset$ or $\mathcal{I} = \emptyset$.

Linear constraints

- Let $f : \mathbb{R}^n \to \mathbb{R}$ and let $h : \mathbb{R}^n \to \mathbb{R}^{m_1}$ and $g : \mathbb{R}^n \to \mathbb{R}^{m_2}$ be two continuously differentiable functions.
- Let the Lagrangian $L: \mathbb{R}^n \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_2} \to \mathbb{R}$ be defined by

$$egin{aligned} \mathcal{L}(x,\mu,\lambda) &= f(x) + \langle \mu,h(x)
angle + \langle \lambda,g(x)
angle \ &= f(x) + \sum_{i=1}^{m_1} \mu_i h_i(x) + \sum_{j=1}^{m_2} \lambda_j g_j(x). \end{aligned}$$

The variables μ , λ are referred to as **dual variables**.

Linear equality constraints

Theorem 18

Assume that h and g are affine, that it to say, there exists $A \in \mathbb{R}^{m_2 \times n}$ and $b \in \mathbb{R}_2^m$ such that

g(x)=Ax+b.

Let \bar{x} be a local solution to (P).

Then there exists $(\mu, \lambda) \in \mathbb{R}^{m_1} \times \mathbb{R}^{m_2}$ such that the following three conditions, referred to as Karush-Kuhn-Tucker (KKT) conditions, are satisfied:

- **1** Stationarity condition: $\nabla_{\mathbf{x}} L(\bar{\mathbf{x}}, \mu, \lambda) = 0$.
- **2** Sign condition: for all $j \in \mathcal{I}$, $\lambda_j \geq 0$.
- **3** Complementarity condition: for all $j \in \mathcal{I}$, $g_j(\bar{x}) < 0 \Longrightarrow \lambda_j = 0$.

Linear equality constraints

Remarks.

- A dual variable (μ, λ) satisfying the KKT conditions is called Lagrange multiplier (associated with x̄).
- Further assumptions are required to have uniqueness of (μ, λ) .

- If *I* = Ø, then the sign condition and the complementarity conditions are trivially satisfied.
- The theorem allows to have $m \ge n$.

Lagrangian formulation

Main ideas of lagrangian formulation:

Consider the primal problem (P): $\inf_{x \in \mathbb{R}^n} f(x)$ s.t.: $g(x) \le 0$ (with $g : \mathbb{R}^n \to \mathbb{R}^m$). Let p^* be the optimal cost of (P), and L the associated Lagrangian formulation. Then $p^* = \inf_{x \in \mathbb{R}^n \lambda \in \mathbb{R}^m} \sup_{x \in \mathbb{R}^m} L(x, \lambda)$. Indeed,

$$\begin{split} \sup_{\lambda \in \mathbb{R}^m} \mathcal{L}(x,\lambda) &= \sup_{\lambda \in \mathbb{R}^m} \left(f(x) + \sum_{j=1}^m \lambda_j g_j(x) \right), \\ &= \begin{cases} f(x) & \text{if } g_j(x) \leq 0, \ \forall j = 1, \dots, m \ (\lambda_j^* = 0) \\ \infty & \text{otherwise (if } x \text{ not feasible and } g_j(x) > 0), \end{cases} \end{split}$$

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

Economic interpretation

Example with $\mathcal{E} = \emptyset$. Aim: minimizing a cost under some constraints (e.g. warehouse space): min f(x) $g_i(x) \le 0$

Optimal cost : p^* . Lagrangian: $L(x, \lambda) = f(x) + \sum_{j=1}^m \lambda_j g_j(x)$.

We relax the constraints while paying an additional cost linear in the constraints (e.g. by renting an extra space at a price λ₁ (in €/m²)).

•
$$\lambda_j \geq 0$$
. Suppose $\lambda_j > 0$,

- then if g_j(x) < 0: the cost is reduced (the company rents parts of its own space).</p>
- and if $g_j(x) > 0$: constraints are violated (the company pays for extra space).
- We can define an optimal cost, called the dual function, depending on the price λ. The optimal dual value is d* : the optimal cost under the less favorable set of prices.
- We always have d* ≤ p*.
- Strong duality: d* = p*. Then the company has no advantage to pay for an extra space (or to receive extra payment for renting parts of its own space).

Linear constraints

Exercise.

Consider the problem

$$\inf_{(x,y)\in\mathbb{R}^2} f(x,y) := y, \quad \text{s.t.} \begin{cases} g_1(x,y) := -2x - y \le 0, \\ g_2(x,y) := x - y \le 0, \\ g_3(x,y) := y - 3 \le 0. \end{cases}$$

Draw the feasible set and find (geometrically) the solution.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Verify that the KKT conditions are satisfied.

Solution.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

- Solution to the problem: $(\bar{x}, \bar{y}) = 0$.
- Let λ ∈ ℝ³ be the associated Lagrange multiplier.
 Necessarily λ₃ = 0, since g₃(x̄, ȳ) < 0, by complementarity.

Lagrangian:

$$L(x, y, \lambda) = y - \lambda_1(2x + y) - \lambda_2(-x + y).$$

The stationarity condition yields:

$$0 = \frac{\partial L}{\partial x}(0,0) = -2\lambda_1 + \lambda_2$$
$$0 = \frac{\partial L}{\partial y}(0,0) = 1 - \lambda_1 - \lambda_2.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

This linear system has a unique solution

$$\lambda_1 = 1/3 \ge 0 \quad \lambda_2 = 2/3 \ge 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The sign condition is satisfied.

Example 1. Case of one equality constraint:

$$m = 1, \quad \mathcal{E} = \{1\}, \quad \mathcal{I} = \emptyset.$$

The matrix A is a row vector, let $q = A^{\top}$.

Proof of KKT conditions.

- Geometrically, we understand that $\nabla f(\bar{x})$ and q are colinear.
- Let $\mu \in \mathbb{R}$ be such that $\nabla f(\bar{x}) = \mu q$.

We have:

$$\nabla_{\mathbf{x}} L(\bar{\mathbf{x}}, \mu) = \nabla f(\bar{\mathbf{x}}) + \mu \nabla g(\bar{\mathbf{x}}) = \nabla f(\bar{\mathbf{x}}) + \mu q = 0.$$

Illustration.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

General introduction Methods for unconstrained optim. Optimality conditions

Linear constraints

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Example 2(a). Case of one (active) inequality equality constraint:

Example 2(b). Case of **one (inactive) inequality equality constraint**:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example 3. Case of *m* equality constraints $(\mathcal{I} = \emptyset)$.

Proof.

Let ε > 0 be given by the definition of a local solution.
 Let h ∈ Ker(A) (that is Ah = 0).
 For all θ ∈ ℝ, let x_θ = x̄ + θh.

• For all $\theta \in \mathbb{R}$, x_{θ} is **feasible**:

$$g(x_{\theta}) = Ax_{\theta} + b = A\bar{x} + b + \theta Ah = 0.$$

For all $\theta \in [0, \varepsilon/\|h\|]$, we have $\|x_{\theta} - \bar{x}\| \leq \varepsilon$ and thus

 $f(x_{\theta}) \geq f(\bar{x}).$

We deduce that

$$0\leq \lim_{ heta\searrow 0}rac{f(ar{x}+ heta h)-f(ar{x})}{ heta}=\langle
abla f(ar{x}),h
angle.$$

Since $h \in \text{Ker}(A)$, we also have $-h \in \text{Ker}(A)$. Therefore,

$$0 \leq \langle
abla f(ar{x}), -h
angle$$

and therefore $\langle \nabla f(\bar{x}), h \rangle = 0$.

We deduce that

$$abla f(ar{x}) \in (\operatorname{Ker}(A))^{\perp} = \operatorname{Im}(A^{\top}),$$

that is, there exists $\mu \in \mathbb{R}^m$ such that $\nabla f(\bar{x}) = A^\top \mu$.

• We have $\nabla_x L(\bar{x}, \mu) = \nabla f(\bar{x}) - A^\top \mu = 0.$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1 General introduction

- What is an optimization problem?
- Classes of problems
- Existence of a solution
- Derivatives

2 Methods for unconstrained optimization

- Optimality conditions
- Gradient methods
- Newton's method

3 Optimality conditions for constrained problems

- Linear constraints
- Non-linear constraints
- Sensitivity analysis

Definition 19

Let \bar{x} be a feasible point. Let the set of **active inequality** constraints $\mathcal{I}_0(\bar{x})$ be defined by

 $\mathcal{I}_0(\bar{x}) = \big\{ j \in \mathcal{I} \, | \, g_j(\bar{x}) = 0 \big\}.$

We say that the **Linear Independence Qualification Condition** (LICQ) holds at \bar{x} , if the following set of vectors is linearly indepedent:

 $\left\{\nabla k_l(\bar{x})\right\}_{l\in\mathcal{E}\cup\mathcal{I}_0(\bar{x})},$

where

$$k_I(\overline{x}) = \left\{ egin{array}{l} h_I(ar{x}) ext{ if } I \in \mathcal{E} \ g_I(ar{x}) ext{ if } I \in \mathcal{I}_0. \end{array}
ight.$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > のへで

Theorem 20

Let \bar{x} be a local solution to (P). Assume that the LICQ holds at \bar{x} . Then there exists a unique (μ, λ) such that the **KKT** conditions are satisfied.

Remarks.

- Many available variants of this theorem in the literature, with different qualification conditions.
- At a numerical level, a solution that does not satisfy the LICQ is hard to compute.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example 4.

Consider the problem

$$\inf_{x\in\mathbb{R}} x, \quad \text{subject to: } x^2 \leq 0.$$

Unique feasible point: $\bar{x} = 0$, thus the solution.

Lagrangian:

$$L(x,\lambda)=x+\lambda x^2.$$

At zero:

$$abla_{\mathbf{x}}L(\mathbf{0},\lambda)=1+2\lambda ar{\mathbf{x}}=1
eq \mathbf{0}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The LICQ is not satisfied, since $\nabla g_1(0) = 0$.

Theorem 21

Assume that

- f is convex
- for all $i \in \mathcal{E}$, the map $x \mapsto h_i(x)$ is affine
- for all $j \in \mathcal{I}$, the map $x \mapsto g_j(x)$ is convex.

Then any feasible point \bar{x} satisfying the **KKT conditions** is a **global solution** to the problem.

Remark. The result holds whether the LICQ holds or not at \bar{x} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Exercise

Exercise. Consider the function $f: (x, y) \in \mathbb{R}^2 \mapsto \exp(x + y^2) + y + x^2$.

1 Prove that *f* is coercive.

2 Calcule
$$\nabla f(x, y)$$
 and $\nabla^2 f(x, y)$.

3 We recall that a symmetric matrix of size 2 of the form $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$ is positive semidefinite if and only if $a + c \ge 0$ and $ac - b^2 \ge 0$. Using this fact, prove that f is convex.

$$\inf_{(x,y)\in\mathbb{R}^2} f(x,y), \quad \text{subject to:} \quad \left\{ \begin{array}{l} -x-y \leq 0 \\ -x-2 \leq 0. \end{array} \right. \tag{\mathcal{P}} \right.$$

< ロ > < 同 > < 回 > < 回 > < 回 >

Verify that (0,0) is feasible and satisfies the KKT conditions. 5 Is the point (0,0) a global solution to problem (\mathcal{P}) ?

Exercise

Solution.

1. We use the inequality: $\exp(z) \ge 1 + z$, which yields:

$$\begin{split} f(x,y) &\geq x+y^2+y+x^2 \\ &= \frac{1}{2}(x^2+y^2) + \frac{1}{2}(x^2+2x+1) + \frac{1}{2}(y^2+2y+1) - 1 \\ &= \frac{1}{2}\|(x,y)\|^2 + (x+1)^2 + (y+1)^2 - 1 \underset{\|(x,y)\| \to \infty}{\longrightarrow} \infty. \end{split}$$

General introduction Methods for unconstrained optim. Optimality conditions

Exercise

2. It holds:

$$\frac{\partial f}{\partial x} = \exp(x + y^2) + 2x, \qquad \frac{\partial f}{\partial y} = 2y \exp(x + y^2) + 1.$$

Therefore,
$$\nabla f(x, y) = \begin{pmatrix} \exp(x + y^2) + 2x \\ 2y \exp(x + y^2) + 1 \end{pmatrix}$$
.

We also have

$$\frac{\partial^2 f}{\partial x^2} = \exp(x+y^2) + 2, \qquad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = 2y \exp(x+y^2),$$

$$\frac{\partial^2 f}{\partial y^2} = 2 \exp(x + y^2) + 4y^2 \exp(x + y^2).$$

Thus,
$$D^2 f(x, y) = \begin{pmatrix} \exp(x + y^2) + 2 & 2y \exp(x + y^2) \\ 2y \exp(x + y^2) & (2 + 4y^2) \exp(x + y^2) \end{pmatrix}$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

3. Proof of positive definiteness of $D^2 f$. It holds:

$$a + c = (3 + 4y^2) \exp(x + y^2) + 2 \ge 0$$

and

$$ac - b^2 = 2\exp(2x + 2y^2) + 4(1 + 2y^2)\exp(x + y^2) \ge 0.$$

It follows that $D^2 f(x, y)$ is positive semidefinite, for all (x, y). Therefore f is a convex function.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

General introduction Methods for unconstrained optim. Optimality conditions

Exercise

4. Feasibility of (0,0): we have $0 + 0 \ge 0$ and 0 + 2 > 0. KKT conditions. Lagrangian:

$$L(x,y,\lambda_1,\lambda_2) = \exp(x+y^2) + y + x^2 - \lambda_1(x+y) - \lambda_2(x+2).$$

Therefore,

$$rac{\partial L}{\partial x}(0,0,\lambda_1,\lambda_2)=1-\lambda_1-\lambda_2,\qquad rac{\partial L}{\partial y}(0,0)=1-\lambda_1.$$

Taking $\lambda_1 = 1$ and $\lambda_2 = 0$, we have:

- **1** Stationarity: $\frac{\partial L}{\partial x}(0,0,1,0) = \frac{\partial L}{\partial y}(0,0,1,0) = 0.$
- **2** Sign condition: $\lambda_1 \ge 0$, $\lambda_2 \ge 0$.
- 3 Complementarity: the second constraint is inactive and the corresponding Lagrange multiplier is null.

- 5. We have the following:
 - The cost function is convex.
 - The functions -(x + y) and -(x + 2) are convex.
 - The point (0,0) is feasible and satisfies the KKT conditions.

Therefore (0,0) is a global solution.

Exercise.

Consider:

$$\inf_{x\in\mathbb{R}^2}f(x):=-x_1-x_2,\quad \text{s.t.}\;\left\{\begin{array}{ll}g_1(x)=&x_1^2+2x_2^2-3&\leq 0\\g_2(x)=&x_1-1&\leq 0.\end{array}\right.$$

Draw the feasible set and prove the existence of a solution.

• Verify that the LICQ at the KKT conditions hold at $\bar{x} = (1, 1)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Verification of the LICQ.

$$abla g_1(ar{x}) = \begin{pmatrix} -2ar{x}_1 \\ -4ar{x}_2 \end{pmatrix} = \begin{pmatrix} -2 \\ -4 \end{pmatrix} \quad \text{and} \quad
abla g_2(ar{x}) = \begin{pmatrix} -1 \\ 0 \end{pmatrix}.$$

We have: $\mathcal{E} = \emptyset$, $\mathcal{I}_0(\bar{x}) = \{1, 2\}$. The vectors $\nabla g_1(\bar{x})$ and $\nabla g_2(\bar{x})$ are linearly independent, since

$$\det \begin{pmatrix} -2 & -4 \\ -1 & 0 \end{pmatrix} = -4 \neq 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Thus the LICQ is satisfied at \bar{x} .

KKT conditions.

- Lagrangian: $L(x, \lambda) = (-x_1 - x_2) - \lambda_1(-x_1^2 - 2x_2^2 + 3) - \lambda_2(-x_1 + 1).$
- Stationarity condition:

$$\begin{pmatrix} -1 \\ -1 \end{pmatrix} + \begin{pmatrix} 2 ar{x}_1 \\ 4 ar{x}_2 \end{pmatrix} \lambda_1 + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \lambda_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

It is satisfied at \bar{x} with $\lambda_1 = 1/4 \ge 0$ and $\lambda_2 = 1/2 \ge 0$.

- The sign condition is satisfied.
- The complementarity condition is satisfied (all inequality constraints are active).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1 General introduction

- What is an optimization problem?
- Classes of problems
- Existence of a solution
- Derivatives

2 Methods for unconstrained optimization

- Optimality conditions
- Gradient methods
- Newton's method

3 Optimality conditions for constrained problems

- Linear constraints
- Non-linear constraints
- Sensitivity analysis

Consider the family of optimization problems

$$\inf_{x\in\mathbb{R}^n}f(x), \quad ext{s.t.} \; \left\{ egin{array}{cc} h_i(x)=y_i, & orall i\in\mathcal{E}, \ g_j(x)\leq y_j, & orall j\in\mathcal{I}, \end{array}
ight.$$

(P(y))

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

parametrized by the vector $y \in \mathbb{R}^m$.

• Let the value function V be defined by

 $V(y) = \operatorname{val}(P(y)).$

Theorem 22

Assume that for some \bar{y} , the problem $(P(\bar{y}))$ has a solution \bar{x} satisfying the KKT conditions. Let λ denote the corresponding Lagrange multiplier.

Then, under some technical assumptions, V is differentiable at \bar{y} and

 $\nabla V(\bar{y}) = \lambda.$

Interpretation. A variation δy_i in the *i*-th constraint generates a variation of the optimal cost of $\lambda_i \delta y_i$ (as a **first approximation**).

Exercise.

A company decides to rent an engine over d days. The engine can be used to produce two different objects. The two objects are not produced simultaneously. Let x_1 and x_2 denote the times dedicated to the production of each object. The resulting benefits (in $k \in$) are given by:

$$rac{x_1}{1+x_1}$$
 and $rac{x_2}{4+x_2}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- **1** Formulate the problem as a minimization problem.
- 2 Justify the existence of a solution.
- Write the KKT conditions. What is the unit of the dual variable?
- 4 Verify that $\bar{x} = (4, 6)$ satisfies the KKT conditions for d = 10 days. Is it a global solution to the problem?
- 5 The renting cost of the engine is 70€/day. Is it of interest for the company to rent the engine for a longer time?

1. Problem:

$$\inf_{x \in \mathbb{R}^2} -\frac{x_1}{1+x_1} - \frac{x_2}{4+x_2}, \quad \text{s.t.} \begin{cases} x_1 + x_2 = d \\ -x_1 \le 0 \\ -x_2 \le 0 \end{cases}$$

2. The feasible set is obviously compact and non-empty and the cost function is continuous. Therefore, there exists a solution.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

3. Let \bar{x} be a solution. Let $\mu \in \mathbb{R}^2$ and $\lambda \in \mathbb{R}^2$ be the associated Lagrange multipliers. Lagrangian:

$$L(x,\mu,\lambda) = -\frac{x_1}{1+x_1} - \frac{x_2}{4+x_2} - \mu(x_1+x_2-d) - \lambda_1 x_1 - \lambda_2 x_2.$$

KKT conditions:

Stationarity:

$$-rac{1}{(1+ar{x}_1)^2}-\mu-\lambda_1=0, \qquad -rac{4}{(4+ar{x}_2)^2}-\mu-\lambda_2=0.$$

 $\begin{array}{ll} \textbf{ Sign condition: } \lambda_1 \geq \textbf{0}, \ \lambda_2 \geq \textbf{0}. \\ \textbf{ Complementarity: } \ \bar{x}_1 > \textbf{0} \Rightarrow \lambda_1 = \textbf{0}, \ \bar{x}_2 > \textbf{0} \Rightarrow \lambda_2 = \textbf{0}. \end{array}$

• Units:
$$[\mu] = [\lambda_1] = [\lambda_2] = \mathsf{k} \in /\mathsf{day}.$$

4. Let μ, λ be such that the KKT conditions hold true. By complementarity condition, we necessarily have $\lambda_1 = \lambda_2 = 0$. The stationarity condition holds true with

$$\mu = -\frac{1}{(1+\bar{x}_1)^2} = -\frac{4}{(4+\bar{x}_2)^2} = -\frac{1}{25} = -0.04.$$

The sign condition trivially holds true since the inequality constraints are inactive. Lagrangian:

$$L(x, \mu, \lambda) = -\frac{x_1}{1+x_1} - \frac{x_2}{4+x_2} + 0.04(x_1 + x_2 - d).$$

If $x_1 + x_2 > d$, the cost associated to constraints is increased, otherwise decreased (company rents the engine for the $d - x_1 - x_2$ remaining days).

The point \bar{x} is feasible and satisfies the KKT conditions. We have affine constraints and a convex cost function, therefore, the KKT conditions are sufficient. The point \bar{x} is a global solution.

5. d is fixed.

Increasing the renting time of y days will generate a variation of cost of μy (approximately), that is, an augmentation of the benefit of $40 \in /day$ (less the renting price). It corresponds to the benefit that the company can have from another firm for renting the engine. Thus, the cost will corresponds to:

$$c(\overline{x},\mu,\lambda) = -rac{4}{1+4} - rac{6}{4+6} - 0.04y + 0.07y = -1.4 + 0.03y.$$

It would be of interest for the company to reduce the renting time.

And to sum up the courses ...

	Necessary conditions	Sufficient conditions
Abstract formulation		if K compact, $f \in C^0(K)$
(exist.)		then at least one solution
		if K closed,
		$f \in C^0(K)$, coercive
		then at least one solution

	Necessary conditions	Sufficient conditions
No constraints	if \overline{x} local sol.,	if $f \in C^2(K)$, $\nabla f(\overline{x}) = 0$,
$K = \mathbb{R}^d$ (opt.)	$f\in \mathcal{C}^2(\mathcal{K})$ then,	$D^2 f(\overline{x})$ positive def.
	$D^2 f(\overline{x})$ is positive semi-def.	then \overline{x} local sol.
Affine		f convex,
constraints	\overline{x} local sol. then KKT	then KKT=global sol.
Non-linear		f convex,
constraints	\overline{x} local sol., LICQ then KKT	h affine, g convex,
		then KKT=global sol.