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Main objectives

Skills to be developed:

Modelling of practical situations as an optimization problem.

Numerical resolution of such problems with the help of
AMPL (A Mathematical Programming Language) and python.

Basic knowledge in optimization: theory and numerics.

Pre-requisite:

Programming: little (python)

Maths: little (Topology & Differential calculus).



General introduction Methods for unconstrained optim. Optimality conditions

Main objectives

Skills to be developed:

Modelling of practical situations as an optimization problem.

Numerical resolution of such problems with the help of
AMPL (A Mathematical Programming Language) and python.

Basic knowledge in optimization: theory and numerics.

Pre-requisite:

Programming: little (python)

Maths: little (Topology & Differential calculus).



General introduction Methods for unconstrained optim. Optimality conditions

1 General introduction
What is an optimization problem?
Classes of problems
Existence of a solution
Derivatives

2 Methods for unconstrained optimization
Optimality conditions
Gradient methods
Newton’s method

3 Optimality conditions for constrained problems
Linear constraints
Non-linear constraints
Sensitivity analysis



General introduction Methods for unconstrained optim. Optimality conditions

Infimum (and supremum)

Let K ⊂ Rd and f : K → R be a numerical function.
By construction of real numbers, the set {f (x)|x ∈ K} has an
infimum α = infx∈K f (x).
It satisfies: α ≤ f (x) for all x ∈ K .
Remark: α = −∞ is a possible value.
Characterisation of infimum:

α = inf
x∈K

f (x) > −∞
For all ε > 0, there exists x ∈ K such that f (x) < α+ ε.

α = inf
x∈K

f (x) = −∞
For all N > 0, there exists x ∈ K such that f (x) < −N.
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What is an optimization problem?

Definition 1

An optimization problem is a mathematical expression of the
form:

inf
x∈D

f (x), subject to: x ∈ K , (P)

where:

D is a set, called domain of f

f : D → R is called cost function (or objective function)

K ⊆ D is called feasible set.

In this class: D = Rn. Unconstrained optimization: D = K = Rn.

Straightforward adaptation of all results of the class to
maximization problems, replacing f by −f .

Abbreviation: “subject to” ⇝ “s.t.”.
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What is an optimization problem?

f : x → x2, x ∈ [−5, 5]



General introduction Methods for unconstrained optim. Optimality conditions

What is an optimization problem?

Definition 2

A point x is called feasible if x ∈ K .

A feasible point x̄ is called (global) solution (to problem P) if

f (x) ≥ f (x̄), for all x ∈ K .

If x̄ is a global solution, then the real number f (x̄) is called
value of the optimization problem, it is denoted
val(P)(val(P) = α).

Example. The point x = π is the solution of the problem

inf
x∈R

cos(x), x ∈ [0, 2π].
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What is an optimization problem?

Remarks.

An optimization problem may not have a solution. Examples:

inf
x∈R

ex , (P1)

inf
x∈R

x3. (P2)

The concept of value of an optimization problem can also be
defined whether the problem has a solution or not, as an
element of R = R ∪ {−∞,∞}. In particular:

val(P1) = 0, val(P2) = −∞.
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What is an optimization problem?

Definition 3

Let x̄ ∈ K . We call x̄ a local solution to (P) if there exists ε > 0
such that the following holds true: for all x ∈ K ,

∥x − x̄∥ ≤ ε =⇒ f (x) ≥ f (x̄).

Example: inf
x∈R

− x2, s.t. x ∈ [−1, 2]. Local solutions: −1 and 2.

Remarks.

A global solution is also a local solution.

The notion of local optimality does not depend on the norm,
if K is a subset of a finite dimensional vector space.
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What is an optimization problem?

Notation.
Let B̄(x̄ , ε) denote the closed ball of center x̄ and radius ε.

Equivalent definition.
A feasible point x̄ is a local solution to (P) if and only if there
exists ε > 0 such that x̄ is a global solution to the following
localized problem:

inf
x∈Rn

f (x), x ∈ K ∩ B̄(x̄ , ε).
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What is an optimization problem?

Constraints.
Most of the time, the feasible set K is described by

K =

{
x ∈ Rn

∣∣∣ hi (x) = 0, ∀i ∈ E
gj(x) ≤ 0, ∀j ∈ I

}
,

where h : Rn → Rm1 , g : Rn → Rm2 .

We call the expressions

hi (x) = 0: equality constraint

gj(x) ≤ 0: inequality constraint.
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Classes of optimization problems

From the point of view of applications, one can distinguish four
classes of optimization problems.

1 Economical problems

2 Physical problems

3 Inverse problems

4 Learning problems.
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1. Economical problems.

Any practical situation involving

a cost to be minimized, some revenue or performance index
to be maximized

operational decisions (production level in thermal power
plants, amount of water flowing out from a hydropower plant,
beginning and end of the maintenance of a nuclear power
plant, etc.)

constraints bounding the decisions (which are often
non-negative!)

physical constraints (“total production=demand”, “variation
of stock= input - output”,...).
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Classes of optimization problems

2. Physical problems.

Some equilibrium problems in physics can be formulated as
optimization problems, involving an energy to be minimized.

Mechanical structures

Electricity networks

Gas networks

Some similar problems arise in economics and game theory:

Cournot models with competing firms

Traffic models on road networks.
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Classes of optimization problems

3. Inverse problems

Context. A variable x must be identified, with the help of another
variable y , related to x via a relation y = F (x).

Examples:

the epicenter x of an earthquake, given seismic measurements
y .

localization x of a crack in a mechanical structure, given
displacements measurements y provided by captors

temperature in the core of a nuclear plant, given external
temperature measurements
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Classes of optimization problems

The equation y = F (x) (with unknown x)...

may not have a solution (because of inaccurate
measurements)

may have several solutions (too few measurements).

Optimization is the solution! Consider

inf
x∈D

∥y − F (x)∥2, subject to: x ∈ K ,

where the constraints may model a priori knowledge on x .



General introduction Methods for unconstrained optim. Optimality conditions

1 General introduction
What is an optimization problem?
Classes of problems
Existence of a solution
Derivatives

2 Methods for unconstrained optimization
Optimality conditions
Gradient methods
Newton’s method

3 Optimality conditions for constrained problems
Linear constraints
Non-linear constraints
Sensitivity analysis



General introduction Methods for unconstrained optim. Optimality conditions

Existence of a solution

Theorem 4 (existence of extreme value (Weierstrass))

Assume the following:

K is non-empty and compact (i.e. closed and bounded)

f is continuous on K .

Then the optimization problem (P) has (at least) one solution.

Remarks. If K =
{
x ∈ Rn | hi (x) = 0, ∀i ∈ E , gj(x) ≤ 0, ∀j ∈ I

}
,

where hi , gj are continuous, then K is closed. In practical exercises,
it is not necessary to justify the continuity of hi or gj .
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Existence of a solution

Definition 5

We say that f : Rd → R is coercive if the following holds: for any
sequence (xk)k∈N in Rd ,

∥xk∥ → ∞ =⇒ f (xk) → +∞.

Remark. The definition is independent of the norm.
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Existence of a solution

Exercise. Consider

f : (x , y) ∈ R2 7→ x4 − 2xy + 2y2.

Prove that f is coercive on R2.
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Existence of a solution

Solution. We have x4 ≥ 2x2 − 1, since

0 ≤ (x2 − 1)2 = x4 − 2x2 + 1.

Therefore

f (x , y) ≥ 2x2 − 1− 2xy + 2y2

= (x2 + y2)− 1 + (x − y)2

≥ ∥(x , y)∥2 − 1 −→
∥(x ,y)∥→∞

∞,

where ∥ · ∥ denotes the Euclidean norm. Thus f is coercive.
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Existence of a solution

Lemma 6

Assume the following:

K is non-empty and closed

f is continuous on K

f is coercive on K .

Then the optimization problem (P) has (at least) one solution.
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Existence of a solution

Elements of proof.
Fix x0 ∈ K .
If f is coercive, then f goes large when x moves away from x0, thus
there exists a radius Rx0 such that for all x located outside the ball
B centered on x0 of radius Rx0 , f (x) ≥ f (x0).

By Weierstrass extreme value theorem, there is a global minimizer
x∗ on the closed ball B.
x∗ being minimizer within a ball, we have f (x∗) ≤ f (x) for any x
in B.

In particular for x0, thus f (x
∗) ≤ f (x), for all ∥x − x0∥ ≥ Rx0 . So

x∗ is a global minimum.
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Derivatives

Definition 7

A function F : Rn → Rm is called differentiable at x̄ if for all
i = 1, ...m, for all j = 1, ..., n, the function

x ∈ R 7→ Fi (x̄1, ..., x̄j−1, x , x̄j+1, ...) ∈ R

is differentiable. Its derivative at x̄j is called partial derivative of
F , it is denoted ∂Fi

∂xj
(x̄).

The matrix

DF (x̄) =

(
∂Fi
∂xj

(x̄)

)
i=1,...,m
j=1,...,n

∈ Rm×n

is called Jacobian matrix.
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Derivatives

The function F is said to be continuously differentiable if the
Jacobian DF : x ∈ Rn → Rm×n is continuous.

If F is continuously differentiable, then we have the first
order Taylor expansion

F (x + δx) = F (x) + DF (x)δx + o(∥δx∥).

Chain rule. Let F : Rn → Rm and let G : Rp → Rn be
continuously differentiable functions. Let H = F ◦ G (that is,
H(x) = F (G (x))). Then

DH(x) = DF (G (x))DG (x), for all x ∈ Rp.
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Derivatives

Definition 8

Let f : Rn → R be differentiable at x ∈ Rn. We call gradient of f
(at x) the column vector:

∇f (x) =


∂f
∂x1

(x)
...

∂f
∂xn

(x)

 = Df (x)⊤.
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Derivatives

Definition 9

The function F : Rn → Rm is said to be twice differentiable if it
is differentiable and DF is differentiable.

We denote: ∂2Fi
∂xj∂xk

(x) = ∂
∂xj

(
∂F
∂xk

)
(x).

If m = 1, the matrix

D2F (x) =

(
∂2F

∂xj∂xk
(x)

)
j=1,...,n
k=1,...,n

is called Hessian matrix. It is symmetric if F is twice continuously
differentiable.
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Derivatives

Exercise.
Calculate the gradient and the Hessian of the function

f : x ∈ Rn 7→ 1

2
⟨x ,Ax⟩+ ⟨b, x⟩,

where A ∈ Rn×n and b ∈ Rn.
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Derivatives

Solution. We have

f (x) =
1

2

n∑
i=1

n∑
j=1

Aijxixj +
n∑

i=1

bixi .

Therefore,

∂f

∂xk
(x) =

1

2

n∑
j=1

Akjxj +
1

2

n∑
i=1

Aikxi + bk

=
1

2
(Ax)k +

1

2
(A⊤x)k + bk .

Therefore,

∇f (x) =
1

2
(A+ Ā⊤)x + b.

Hessian: D2f (x) = 1
2(A+ A⊤).
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Optimality conditions

Let us fix a continuously differentiable function f : Rn → R for the
whole section. Let us consider

inf
x∈Rn

f (x) (P)

The function f is said to be stationary at x ∈ Rn if ∇f (x) = 0.

Theorem 10 (Necessary optimality condition)

Let x̄ ∈ Rn be a local solution of (P). Then, f is stationary at x̄ .

Remark. Stationarity is only a necessary condition!
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Optimality conditions

Theorem 11

Assume that f is twice continuously differentiable. Let x̄ be a
stationary point.

Necessary condition.
If x̄ is a local solution of (P), then D2f (x̄) is positive
semi-definite, that is to say,

⟨h,D2f (x̄)h⟩ ≥ 0, for all h ∈ Rn.

Sufficient condition.
If D2f (x̄) is positive definite, that is to say if

⟨h,D2f (x̄)h⟩ > 0, for all h ∈ Rn\{0} ,

then x̄ is a local solution of (P).
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Optimality conditions

Definition 12

The function f is said to be convex if

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y),

for all x and y ∈ Rn and for all λ ∈ [0, 1].

Theorem 13

The function f is convex if and only if

f (y) ≥ f (x) + ⟨∇f (x), y − x⟩,

for all x and y ∈ Rn.

If f is twice differentiable, then f is convex if and only if
D2f (x) is symmetric positive semi-definite for all x ∈ Rn.
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Optimality conditions
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Optimality conditions

Theorem 14

Assume that f is convex. Let x̄ be a stationary point of f . Then
it is a global solution of (P).

Proof. For all x ∈ Rn, we have

f (x) ≥ f (x̄) + ⟨∇f (x̄), x − x̄⟩ = f (x̄).
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Optimality conditions

Exercise.
Let A ∈ Rn×n be symmetric positive definite and let b ∈ Rn. Let

f : x ∈ Rn 7→ 1

2
⟨x ,Ax⟩+ ⟨b, x⟩.

Prove that
inf
x∈Rn

f (x)

has a unique solution.
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Optimality conditions

Solution.

We have ∇f (x) = Ax + b and ∇2f (x) = A. Since A is
symmetric positive definite, thus symmetric positive
semi-definite, the function f is convex.

For a convex function, a point is a solution if and only if it is
a stationary point. Thus it suffices to prove the existence and
uniqueness of a stationary point.

We have

x is stationary ⇐⇒ ∇f (x) = 0

⇐⇒ Ax + b = 0

⇐⇒ x = −A−1b.

Therefore there is a unique stationary point, which concludes
the proof.
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Gradient methods

Our goal: solving numerically the problem

inf
x∈Rn

f (x). (P)

General idea: to compute a sequence (xk)k∈N such that

f (xk+1) ≤ f (xk), ∀k ∈ N,

the inequality being strict if ∇f (xk) ̸= 0. → Iterative method.
How to compute xk+1?
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Gradient methods

Main idea of gradient methods.

Let xk ∈ Rn. Let dk be a descent direction at xk . Let α > 0. Then

f (xk + αdk) = f (xk) + α ⟨∇f (xk), dk⟩︸ ︷︷ ︸
<0

+o(α).

Therefore, if α is small enough,

f (xk + αdk) < f (xk).

We can set
xk+1 = xk + αdk .
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Gradient methods

Definition 15

Let x ∈ Rn and let d ∈ Rn. The vector d is called descent
direction if

⟨∇f (x), d⟩ < 0.

Remark. If ∇f (x) ̸= 0, then d = −∇f (x) is a descent direction.
Indeed,

⟨∇f (x), d⟩ = −⟨∇f (x),∇f (x)⟩ = −∥∇f (x)∥2 < 0.
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Gradient methods

Gradient descent algorithm.

1 Input: x0 ∈ Rn, ε > 0.

2 Set k = 0.

3 While ∥∇f (xk)∥ ≥ ε, do

(a) Find a descent direction dk .
(b) Find αk > 0 such that f (xk + αkdk) < f (xk).
(c) Set xk+1 = xk + αkdk .
(d) Set k = k + 1.

4 Output: xk .

Remark. Step (b) is crucial; it is called line search.
The real αk is called stepsize.
Exercice: Code the gradient descent algorithm
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Gradient methods

On the choice of αk .
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Gradient methods

On the choice of αk .

Let us fix xk ∈ Rn. Let us define

ϕk : α ∈ R 7→ f (xk + αdk).

The condition f (xk + αkdk) < f (xk) is equivalent to

ϕk(αk) < ϕk(0).

A natural idea: define αk as a solution to

inf
α≥0

ϕk(α).

Minimizing ϕk would take too much time! A compromise must be
found between simplicity of computation and quality of α.
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Gradient methods

Observation. Recall that ϕk(α) = f (xk + αdk). We have

ϕ′
k(α) = ⟨∇f (xk + αdk), dk⟩.

In particular, since dk is a descent direction,

ϕ′
k(0) = ⟨∇f (xk), dk⟩< 0.

Definition 16

Let us fix 0 < c1 < 1. We say that α satisfies Armijo’s rule if

ϕk(α) ≤ ϕk(0) + c1ϕ
′
k(0)α.
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Gradient methods
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Gradient methods

Backstepping algorithm for Armijo’s rule

1 Input: c1 ∈ (0, 1), β > 0, and γ ∈ (0, 1).

2 Set α = β.

3 While α does not satisfy Armijo’s rule,

Set α = γα.

4 Output α.
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Gradient methods

Definition 17

Let 0 < c1 < c2 < 1. We say that α > 0 satisfies Wolfe’s rule if

ϕk(α) < ϕk(0) + c1ϕ
′
k(0)α and ϕ′

k(α) ≥ c2ϕ
′(0).
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Gradient methods
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Gradient methods

Bisection method for Wolfe’s rule

1 Input: c1 ∈ (0, 1), c2 ∈ (c1, 1), β > 0, αmin, αmax .

2 Set α = β.

While Wolfe’s rule not satified:

1 if α does not satisfy Armijo’s rule :

Set αmax = α

α = 0.5(αmin + αmax)

2 if α satisfies Armijo’s rule and ϕ
′
k(α) < c2ϕ

′
k(0), do

Set αmin = α

α = 0.5(αmin + αmax)

3 Output: α.
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Gradient methods

General comments on theoretical results from literature.

The algorithms for the computation of stepsizes satisfying
Armijo and Wolfe’s rules converge in finitely many
iterations (under non-restrictive assumptions).

Without convexity assumption on f , very little can be said
about the convergence of the sequence (xk)k∈N. Typical
results ensure that any accumulation point is stationary.

In practice: (xk)k∈N “usually” converges to a local solution.
Thus a good initialization (that is the choice of x0) is crucial.

In general, slow convergence.
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Newton’s method

Main idea.

Originally, Newton’s method aims at solving non-linear equations
of the form

F (x) = 0,

where F : Rn → Rn is a given continuously differentiable function.
It is an iterative method, generating a sequence (xk)k∈N.
Given xk , we have

F (x) ≈ F (xk) + DF (xk)(x − xk).

Thus we look xk+1 as the solution to the linear equation

F (xk) + DF (xk)(x − xk) = 0

that is, xk+1 = xk − DF (xk)
−1F (xk).
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Newton’s method

Remarks.

If there exists x̄ such that F (x̄) = 0 and DF (x̄) is regular,
then for x0 close enough to x̄ , the sequence (xk)k∈N is
well-posed and converges “quickly” to x̄ .

On the other hand, if x0 is far away from x̄ , there is no
guaranty of convergence.

Back to problem (P). Assume that f is continuously twice
differentiable. Apply Newton’s method with F (x) = ∇f (x) so as
to solve ∇f (x) = 0. Update formula:

xk+1 = xk − D2f (xk)
−1∇f (xk).

The difficulties mentioned above are still relevant.
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Newton’s method

Optimization with Newton’s method.

Newton’s formula can be written in the form:

xk+1 = xk + αkdk ,

where

αk = 1 and dk = −D2f (xk)
−1∇f (xk).

If D2f (xk) is positive definite (and ∇f (xk) ̸= 0), then
D2f (xk)

−1 is also positive definite, and therefore dk is descent
direction:

⟨∇f (xk), dk⟩ = −⟨∇f (xk),D
2f (xk)

−1∇f (xk)⟩ < 0.
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Newton’s method

Globalised Newton’s method.

1 Input: x0 ∈ Rn, ε > 0, a linesearch rule (Armijo, Wolfe,...).

2 Set k = 0.

3 While ∥∇f (xk)∥ ≥ ε, do

(a) If −D2f (xk)
−1∇f (xk) is computable and is a descent direction,

set dk = −D2f (xk)
−1∇f (xk), otherwise set dk = −∇f (xk).

(b) If α = 1 satisfies the linesearch rule, then set αk = 1.
Otherwise, find αk with an appropriate method.

(c) Set xk+1 = xk + αkdk .
(d) Set k = k + 1.

4 Output: xk .
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Newton’s method

Comments.

Under non-restrictive assumptions, the globalized method
converges, whatever the initial condition. Convergence is fast.

The numerical computation of D2f (xk) may be very time
consuming and may generate storage issues because of n2

figures in general).

Quasi-Newton methods construct a sequence of positive
definite matrices Hk such that Hk ≈ D2f (xk)

−1. The matrix
Hk can be stored efficiently (with O(n) figures). Then
dk = −Hk∇f (xk) is a descent direction. Good speed of
convergence is achieved. → The ideal compromise!
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Linear equality constraints

We investigate in this section the problem

inf
x∈Rn

f (x), s.t.

{
hi (x) = 0, ∀i ∈ E
gj(x) ≤ 0, ∀j ∈ I.

(P)

Let x ∈ Rn be feasible. Let j ∈ I. We say that

the inequality constraint j is active if gj(x) = 0
the inequality constraint j is inactive if gj(x) < 0.

Remark. All results of the section are true if E = ∅ or I = ∅.
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Linear constraints

Let f : Rn → R and let h : Rn → Rm1 and g : Rn → Rm2 be
two continuously differentiable functions.

Let the Lagrangian L : Rn × Rm1 × Rm2 → R be defined by

L(x , µ, λ) = f (x) + ⟨µ, h(x)⟩+ ⟨λ, g(x)⟩

= f (x) +

m1∑
i=1

µihi (x) +

m2∑
j=1

λjgj(x).

The variables µ, λ are referred to as dual variables.
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Linear equality constraints

Theorem 18

Assume that h and g are affine, that it to say, there exists
A ∈ Rm2×n and b ∈ Rm

2 such that

g(x) = Ax + b.

Let x̄ be a local solution to (P).

Then there exists (µ, λ) ∈ Rm1 × Rm2 such that the following
three conditions, referred to as Karush-Kuhn-Tucker (KKT)
conditions, are satisfied:

1 Stationarity condition: ∇xL(x̄ , µ, λ) = 0.

2 Sign condition: for all j ∈ I, λj ≥ 0.

3 Complementarity condition: for all j ∈ I,
gj(x̄) < 0 =⇒ λj = 0.
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Linear equality constraints

Remarks.

A dual variable (µ, λ) satisfying the KKT conditions is called
Lagrange multiplier (associated with x̄).

Further assumptions are required to have uniqueness of (µ, λ).

If I = ∅, then the sign condition and the complementarity
conditions are trivially satisfied.

The theorem allows to have m ≥ n.
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Lagrangian formulation

Main ideas of lagrangian formulation:
Consider the primal problem (P): inf

x∈Rn
f (x) s.t.: g(x) ≤ 0

(with g : Rn → Rm).
Let p∗ be the optimal cost of (P), and L the associated Lagrangian
formulation. Then p∗ = inf

x∈Rn
sup
λ∈Rm

L(x , λ). Indeed,

sup
λ∈Rm

L(x , λ) = sup
λ∈Rm

(
f (x) +

m∑
j=1

λjgj(x)
)
,

=

{
f (x) if gj(x) ≤ 0, ∀j = 1, . . . ,m (λ∗

j = 0)

∞ otherwise (if x not feasible and gj(x) > 0),
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Economic interpretation

Example with E = ∅.
Aim: minimizing a cost under some constraints (e.g. warehouse space):
min f (x)
gj (x)≤0

Optimal cost : p∗. Lagrangian: L(x , λ) = f (x) +
∑m

j=1 λjgj(x).

We relax the constraints while paying an additional cost linear in the
constraints (e.g. by renting an extra space at a price λ1 (in e/m2)).

λj ≥ 0. Suppose λj > 0,

then if gj(x) < 0: the cost is reduced (the company rents parts
of its own space).
and if gj(x) > 0: constraints are violated (the company pays
for extra space).

We can define an optimal cost, called the dual function, depending on the price
λ. The optimal dual value is d∗ : the optimal cost under the less favorable set
of prices.

We always have d∗ ≤ p∗.

Strong duality: d∗ = p∗. Then the company has no advantage to pay for an
extra space ( or to receive extra payment for renting parts of its own space).
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Linear constraints

Exercise.

Consider the problem

inf
(x ,y)∈R2

f (x , y) := y , s.t.


g1(x , y) := −2x − y ≤ 0,

g2(x , y) := x − y ≤ 0,

g3(x , y) := y − 3 ≤ 0.

Draw the feasible set and find (geometrically) the solution.

Verify that the KKT conditions are satisfied.
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Linear constraints

Solution.
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Linear constraints

Solution to the problem: (x̄ , ȳ) = 0.

Let λ ∈ R3 be the associated Lagrange multiplier.
Necessarily λ3 = 0, since g3(x̄ , ȳ) < 0, by complementarity.

Lagrangian:

L(x , y , λ) = y − λ1(2x + y)− λ2(−x + y).

The stationarity condition yields:

0 =
∂L

∂x
(0, 0) = −2λ1 + λ2

0 =
∂L

∂y
(0, 0) = 1− λ1 − λ2.
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Linear constraints

This linear system has a unique solution

λ1 = 1/3 ≥ 0 λ2 = 2/3 ≥ 0.

The sign condition is satisfied.
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Linear constraints

Example 1. Case of one equality constraint:

m = 1, E = {1}, I = ∅.

The matrix A is a row vector, let q = A⊤.

Proof of KKT conditions.

Geometrically, we understand that ∇f (x̄) and q are colinear.

Let µ ∈ R be such that ∇f (x̄) = µq.

We have:

∇xL(x̄ , µ) = ∇f (x̄) + µ∇g(x̄) = ∇f (x̄) + µq = 0.
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Linear constraints

Illustration.



General introduction Methods for unconstrained optim. Optimality conditions

Linear constraints
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Linear constraints

Example 2(a). Case of one (active) inequality equality
constraint:
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Linear constraints

Example 2(b). Case of one (inactive) inequality equality
constraint:
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Linear constraints

Example 3. Case of m equality constraints (I = ∅).

Proof.

Let ε > 0 be given by the definition of a local solution.
Let h ∈ Ker(A) (that is Ah = 0).
For all θ ∈ R, let xθ = x̄ + θh.

For all θ ∈ R, xθ is feasible:

g(xθ) = Axθ + b = Ax̄ + b + θAh = 0.

For all θ ∈ [0, ε/∥h∥], we have ∥xθ − x̄∥ ≤ ε and thus

f (xθ) ≥ f (x̄).
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Linear constraints

We deduce that

0 ≤ lim
θ↘0

f (x̄ + θh)− f (x̄)

θ
= ⟨∇f (x̄), h⟩.

Since h ∈ Ker(A), we also have −h ∈ Ker(A). Therefore,

0 ≤ ⟨∇f (x̄),−h⟩

and therefore ⟨∇f (x̄), h⟩ = 0.

We deduce that

∇f (x̄) ∈ (Ker(A))⊥ = Im(A⊤),

that is, there exists µ ∈ Rm such that ∇f (x̄) = A⊤µ.

We have ∇xL(x̄ , µ) = ∇f (x̄)− A⊤µ = 0.
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Non-linear constraints

Definition 19

Let x̄ be a feasible point. Let the set of active inequality
constraints I0(x̄) be defined by

I0(x̄) =
{
j ∈ I | gj(x̄) = 0

}
.

We say that the Linear Independence Qualification Condition
(LICQ) holds at x̄ , if the following set of vectors is linearly
indepedent: {

∇kl(x̄)
}
l∈E∪I0(x̄)

,

where

kl(x) =

{
hl(x̄) if l ∈ E
gl(x̄) if l ∈ I0.
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Non-linear constraints

Theorem 20

Let x̄ be a local solution to (P). Assume that the LICQ holds at
x̄ . Then there exists a unique (µ, λ) such that the KKT
conditions are satisfied.

Remarks.

Many available variants of this theorem in the literature, with
different qualification conditions.

At a numerical level, a solution that does not satisfy the LICQ
is hard to compute.
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Non-linear constraints

Example 4.

Consider the problem

inf
x∈R

x , subject to: x2 ≤ 0.

Unique feasible point: x̄ = 0, thus the solution.

Lagrangian:
L(x , λ) = x + λx2.

At zero:
∇xL(0, λ) = 1 + 2λx̄ = 1 ̸= 0.

The LICQ is not satisfied, since ∇g1(0) = 0.
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Non-linear constraints

Theorem 21

Assume that

f is convex

for all i ∈ E , the map x 7→ hi (x) is affine

for all j ∈ I, the map x 7→ gj(x) is convex.

Then any feasible point x̄ satisfying the KKT conditions is a
global solution to the problem.

Remark. The result holds whether the LICQ holds or not at x̄ .
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Exercise

Exercise. Consider the function f : (x , y) ∈ R2 7→ exp(x + y2) + y + x2.

1 Prove that f is coercive.

2 Calcule ∇f (x , y) and ∇2f (x , y).

3 We recall that a symmetric matrix of size 2 of the form

(
a b
b c

)
is

positive semidefinite if and only if a+ c ≥ 0 and ac − b2 ≥ 0. Using
this fact, prove that f is convex.

4 We consider the following problem:

inf
(x,y)∈R2

f (x , y), subject to:

{
−x − y ≤ 0

−x − 2 ≤ 0.
(P)

Verify that (0, 0) is feasible and satisfies the KKT conditions.

5 Is the point (0, 0) a global solution to problem (P)?
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Exercise

Solution.

1. We use the inequality: exp(z) ≥ 1 + z , which yields:

f (x , y) ≥ x + y2 + y + x2

=
1

2
(x2 + y2) +

1

2
(x2 + 2x + 1) +

1

2
(y2 + 2y + 1)− 1

=
1

2
∥(x , y)∥2 + (x + 1)2 + (y + 1)2 − 1 −→

∥(x ,y)∥→∞
∞.



General introduction Methods for unconstrained optim. Optimality conditions

Exercise

2. It holds:

∂f

∂x
= exp(x + y2) + 2x ,

∂f

∂y
= 2y exp(x + y2) + 1.

Therefore, ∇f (x , y) =

(
exp(x + y2) + 2x
2y exp(x + y2) + 1

)
.

We also have

∂2f

∂x2
= exp(x + y2) + 2,

∂2f

∂x∂y
=

∂2f

∂y∂x
= 2y exp(x + y2),

∂2f

∂y2
= 2 exp(x + y2) + 4y2 exp(x + y2).

Thus, D2f (x , y) =

(
exp(x + y2) + 2 2y exp(x + y2)
2y exp(x + y2) (2 + 4y2) exp(x + y2)

)
.
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Exercise

3. Proof of positive definiteness of D2f . It holds:

a+ c = (3 + 4y2) exp(x + y2) + 2 ≥ 0

and

ac − b2 = 2 exp(2x + 2y2) + 4(1 + 2y2) exp(x + y2) ≥ 0.

It follows that D2f (x , y) is positive semidefinite, for all (x , y).
Therefore f is a convex function.
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Exercise

4. Feasibility of (0, 0): we have 0 + 0 ≥ 0 and 0 + 2 > 0.
KKT conditions. Lagrangian:

L(x , y , λ1, λ2) = exp(x + y2)+ y + x2−λ1(x + y)−λ2(x +2).

Therefore,

∂L

∂x
(0, 0, λ1, λ2) = 1− λ1 − λ2,

∂L

∂y
(0, 0) = 1− λ1.

Taking λ1 = 1 and λ2 = 0, we have:

1 Stationarity: ∂L
∂x (0, 0, 1, 0) =

∂L
∂y (0, 0, 1, 0) = 0.

2 Sign condition: λ1 ≥ 0, λ2 ≥ 0.
3 Complementarity: the second constraint is inactive and the

corresponding Lagrange multiplier is null.
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Exercise

5. We have the following:

The cost function is convex.
The functions −(x + y) and −(x + 2) are convex.
The point (0, 0) is feasible and satisfies the KKT conditions.

Therefore (0, 0) is a global solution.
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Non-linear constraints

Exercise.

Consider:

inf
x∈R2

f (x) := −x1 − x2, s.t.

{
g1(x) = x21 + 2x22 − 3 ≤ 0

g2(x) = x1 − 1 ≤ 0.

Draw the feasible set and prove the existence of a solution.

Verify that the LICQ at the KKT conditions hold at x̄ = (1, 1).
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Non-linear constraints

Verification of the LICQ.

∇g1(x̄) =

(
−2x̄1
−4x̄2

)
=

(
−2
−4

)
and ∇g2(x̄) =

(
−1
0

)
.

We have: E = ∅, I0(x̄) = {1, 2}. The vectors ∇g1(x̄) and ∇g2(x̄)
are linearly independant, since

det

(
−2 −4
−1 0

)
= −4 ̸= 0.

Thus the LICQ is satisfied at x̄ .
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Non-linear constraints

KKT conditions.

Lagrangian:
L(x , λ) = (−x1 − x2)− λ1(−x21 − 2x22 + 3)− λ2(−x1 + 1).

Stationarity condition:(
−1
−1

)
+

(
2x̄1
4x̄2

)
λ1 +

(
1
0

)
λ2 =

(
0
0

)
It is satisfied at x̄ with λ1 = 1/4 ≥ 0 and λ2 = 1/2 ≥ 0.

The sign condition is satisfied.

The complementarity condition is satisfied (all inequality
constraints are active).
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Sensitivity analysis

Consider the family of optimization problems

inf
x∈Rn

f (x), s.t.

{
hi (x) = yi , ∀i ∈ E ,
gj(x) ≤ yj , ∀j ∈ I,

(P(y))

parametrized by the vector y ∈ Rm.

Let the value function V be defined by

V (y) = val(P(y)).
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Sensitivity analysis

Theorem 22

Assume that for some ȳ , the problem (P(ȳ)) has a solution x̄
satisfying the KKT conditions. Let λ denote the corresponding
Lagrange multiplier.
Then, under some technical assumptions, V is differentiable at ȳ
and

∇V (ȳ) = λ.

Interpretation. A variation δyi in the i-th constraint generates a
variation of the optimal cost of λiδyi (as a first approximation).
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Sensitivity analysis

Exercise.

A company decides to rent an engine over d days. The engine can
be used to produce two different objects. The two objects are not
produced simultaneously. Let x1 and x2 denote the times dedicated
to the production of each object. The resulting benefits (in ke)
are given by:

x1
1 + x1

and
x2

4 + x2
.
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Sensitivity analysis

1 Formulate the problem as a minimization problem.

2 Justify the existence of a solution.

3 Write the KKT conditions. What is the unit of the dual
variable?

4 Verify that x̄ = (4, 6) satisfies the KKT conditions for d = 10
days. Is it a global solution to the problem?

5 The renting cost of the engine is 70e/day. Is it of interest for
the company to rent the engine for a longer time?
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Sensitivity analysis

1. Problem:

inf
x∈R2

− x1
1 + x1

− x2
4 + x2

, s.t.


x1 + x2 = d

−x1 ≤ 0

−x2 ≤ 0

2. The feasible set is obviously compact and non-empty and the
cost function is continuous. Therefore, there exists a solution.
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Sensitivity analysis

3. Let x̄ be a solution. Let µ ∈ R2 and λ ∈ R2 be the associated
Lagrange multipliers. Lagrangian:

L(x , µ, λ) = − x1
1 + x1

− x2
4 + x2

−µ(x1+ x2−d)−λ1x1−λ2x2.

KKT conditions:

Stationarity:

− 1

(1 + x̄1)2
− µ− λ1 = 0, − 4

(4 + x̄2)2
− µ− λ2 = 0.

Sign condition: λ1 ≥ 0, λ2 ≥ 0.
Complementarity: x̄1 > 0 ⇒ λ1 = 0, x̄2 > 0 ⇒ λ2 = 0.

Units: [µ] = [λ1] = [λ2] =ke/day.
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Sensitivity analysis

4. Let µ, λ be such that the KKT conditions hold true. By
complementarity condition, we necessarily have λ1 = λ2 = 0.
The stationarity condition holds true with

µ = − 1

(1 + x̄1)2
= − 4

(4 + x̄2)2
= − 1

25
= −0.04.

The sign condition trivially holds true since the inequality
constraints are inactive. Lagrangian:

L(x , µ, λ) = − x1
1 + x1

− x2
4 + x2

+ 0.04(x1 + x2 − d).

If x1 + x2 > d , the cost associated to constraints is increased,
otherwise decreased (company rents the engine for the
d − x1 − x2 remaining days).

The point x̄ is feasible and satisfies the KKT conditions. We
have affine constraints and a convex cost function, therefore,
the KKT conditions are sufficient. The point x̄ is a global
solution.
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Sensitivity analysis

5. d is fixed.
Increasing the renting time of y days will generate a variation
of cost of µy (approximately), that is, an augmentation of the
benefit of 40e/day (less the renting price). It corresponds to
the benefit that the company can have from another firm for
renting the engine. Thus, the cost will corresponds to:

c(x , µ, λ) = − 4

1 + 4
− 6

4 + 6
− 0.04y +0.07y = −1.4+0.03y .

It would be of interest for the company to reduce the renting
time.
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And to sum up the courses ...

Necessary conditions Sufficient conditions

Abstract formulation if K compact, f ∈ C 0(K)
(exist.) then at least one solution

if K closed,
f ∈ C 0(K), coercive

then at least one solution

Necessary conditions Sufficient conditions

No constraints if x local sol., if f ∈ C 2(K), ∇f (x) = 0,
K = Rd (opt.) f ∈ C 2(K) then, D2f (x) positive def.

D2f (x) is positive semi-def. then x local sol.

Affine f convex,
constraints x local sol. then KKT then KKT=global sol.

Non-linear f convex,
constraints x local sol., LICQ then KKT h affine, g convex,

then KKT=global sol.
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