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What is an optimization problem?

f : x → x2, x ∈ [−5, 5]

D = K = R
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What is an optimization problem?

Notation.
Let B̄(x̄ , ε) denote the closed ball of center x̄ and radius ε.

Definition.
A feasible point x̄ is a local solution to (P) if and only if there
exists ε > 0 such that x̄ is a global solution to the following
localized problem:

inf
x∈Rn

f (x), x ∈ K ∩ B̄(x̄ , ε).
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What is an optimization problem?

Constraints.
Most of the time, the feasible set K is described by

K =

{
x ∈ Rn

∣∣∣ hi (x) = 0, ∀i ∈ E
gj(x) ≤ 0, ∀j ∈ I

}
,

where h : Rn → Rm1 , g : Rn → Rm2 .

We call the expressions

hi (x) = 0: equality constraint

gj(x) ≤ 0: inequality constraint.



Reminders Optimality conditions for constrained problems

1 Reminders
Optimization problem
Existence of a solution

2 Optimality conditions for constrained problems
Linear constraints
Non-linear constraints
Sensitivity analysis



Reminders Optimality conditions for constrained problems

Existence of a solution

Theorem 1 (existence of extreme value (Weierstrass))

Assume the following:

?

?

Then the optimization problem (P) has (at least) one solution.
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Existence of a solution

Theorem 2 (existence of extreme value (Weierstrass))

Assume the following:

K is non-empty and compact (i.e. closed and bounded)

f is continuous on K .

Then the optimization problem (P) has (at least) one solution.

Remarks. If K =
{
x ∈ Rn | hi (x) = 0, ∀i ∈ E , gj(x) ≤ 0, ∀j ∈ I

}
,

where hi , gj are continuous, then K is closed. In practical exercises,
it is not necessary to justify the continuity of hi or gj .
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Optimality conditions

Let us fix a continuously differentiable function f : Rn → R for the
whole section. Let us consider

inf
x∈Rn

f (x) (P)

The function f is said to be stationary at x ∈ Rn if ∇f (x) = 0.

Theorem 3 (Necessary optimality condition)

Let x̄ ∈ Rn be a local solution of (P). Then, f is stationary at x̄ .

Remark. Stationarity is only a necessary condition!
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Optimality conditions

Theorem 4

Assume that f is twice continuously differentiable. Let x̄ be a
stationary point.

Necessary condition.
If x̄ is a local solution of (P), then D2f (x̄) is positive
semi-definite, that is to say,

⟨h,D2f (x̄)h⟩ ≥ 0, for all h ∈ Rn.

Sufficient condition.
If D2f (x̄) is positive definite, that is to say if

⟨h,D2f (x̄)h⟩ > 0, for all h ∈ Rn\{0} ,

then x̄ is a local solution of (P).
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illustration
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illustration

Descent gradient with α = 0.25
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illustration

Descent gradient
xk+1 = xk + αd

d d

Taylor:
f (x + td) ≃ f (x) + td f ′(x),

lim
t→0

f (x+td)−f (x)
t = d f ′(x)
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Optimality conditions

Theorem 5

The function f is convex if and only if

f (y) ≥ f (x) + ⟨∇f (x), y − x⟩,

for all x and y ∈ Rn.



Reminders Optimality conditions for constrained problems

Optimality conditions
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Optimality conditions

Theorem 6

The function f is convex if and only if
f is twice differentiable, and D2f (x) is symmetric positive
semi-definite for all x ∈ Rn.
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Optimality conditions

Theorem 7

Assume that f is convex. Let x̄ be a stationary point of f . Then
it is a global solution of (P).

Proof. For all x ∈ Rn, we have

f (x) ≥ f (x̄) + ⟨∇f (x̄), x − x̄⟩ = f (x̄).
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Linear equality constraints

We investigate in this section the problem

inf
x∈Rn

f (x), s.t.

{
hi (x) = 0, ∀i ∈ E
gj(x) ≤ 0, ∀j ∈ I.

(P)

Let x ∈ Rn be feasible. Let j ∈ I. We say that

the inequality constraint j is active if gj(x) = 0
the inequality constraint j is inactive if gj(x) < 0.
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Linear constraints

Let f : Rn → R and let h : Rn → Rm1 and g : Rn → Rm2 be
two continuously differentiable functions.

Let the Lagrangian L : Rn × Rm1 × Rm2 → R be defined by

L(x , µ, λ)=f (x) + ⟨µ, h(x)⟩+ ⟨λ, g(x)⟩

= f (x) +

m1∑
i=1

µihi (x) +

m2∑
j=1

λjgj(x).

The variables µ, λ are referred to as dual variables.
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Linear equality constraints

Theorem 8

Assume that h and g are affine, that it to say, there exists
A ∈ Rm2×n and b ∈ Rm

2 such that

g(x) = Ax + b.

Let x̄ be a local solution to (P).

Then there exists (µ, λ) ∈ Rm1 × Rm2 such that the following
three conditions, referred to as Karush-Kuhn-Tucker (KKT)
conditions, are satisfied:

1 Stationarity condition: ?

2 Sign condition: ?

3 Complementarity condition: ?
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Linear equality constraints

Theorem 9

Assume that h and g are affine, that it to say, there exists
A ∈ Rm2×n and b ∈ Rm

2 such that

g(x) = Ax + b.

Let x̄ be a local solution to (P).

Then there exists (µ, λ) ∈ Rm1 × Rm2 such that the following
three conditions, referred to as Karush-Kuhn-Tucker (KKT)
conditions, are satisfied:

1 Stationarity condition: ∇xL(x̄ , µ, λ) = 0.

2 Sign condition: for all j ∈ I, λj ≥ 0.

3 Complementarity condition: for all j ∈ I,
gj(x̄) < 0 =⇒ λj = 0.
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Linear constraints

Illustration.



Reminders Optimality conditions for constrained problems

KKT stationarity



Reminders Optimality conditions for constrained problems

KKT stationarity
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Linear constraints
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Linear constraints

Example 2(a). Case of one (active) inequality equality
constraint:
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Linear constraints

Example 2(b). Case of one (inactive) inequality equality
constraint:
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Non-linear constraints

Definition 10

Let x̄ be a feasible point. Let the set of active inequality
constraints I0(x̄) be defined by

I0(x̄) =
{
j ∈ I | gj(x̄) = 0

}
.

We say that the Linear Independence Qualification Condition
(LICQ) holds at x̄ , if the following set of vectors is linearly
indepedent: {

∇hi (x̄)
}
i∈E ∪

{
∇gj(x̄)

}
j∈I0(x̄)
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Non-linear constraints
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Non-linear constraints

Theorem 11

Let x̄ be a local solution to (P). Assume that the LICQ holds at
x̄ . Then there exists a unique (µ, λ) such that the KKT
conditions are satisfied.

Remarks.

At a numerical level, a solution that does not satisfy the LICQ
is hard to compute.
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Non-linear constraints

Example 4.

Consider the problem

inf
x∈R

x , subject to: x2 ≤ 0.

Unique feasible point: x̄ = 0, thus the solution.

Lagrangian:
L(x , λ) = x + λx2.

At zero:
∇xL(0, λ) = 1 + 2λx̄ = 1 ̸= 0.

The LICQ is not satisfied, since ∇g1(0) = 0.
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Non-linear constraints

Theorem 12

Assume that

f is convex

for all i ∈ E , the map x 7→ hi (x) is affine

for all j ∈ I, the map x 7→ gj(x) is convex.

Then any feasible point x̄ satisfying the KKT conditions is a
global solution to the problem.

Remark. The result holds whether the LICQ holds or not at x̄ .



Reminders Optimality conditions for constrained problems

Exercise

Exercise. Consider the function f : (x , y) ∈ R2 7→ exp(x + y2) + y + x2.

1 Prove that f is coercive. Indication: Use exp(z) ≥ 1 + z

2 Compute ∇f (x , y) and ∇2f (x , y).

3 We recall that a symmetric matrix of size 2 of the form

(
a b
b c

)
is

positive semidefinite if and only if a+ c ≥ 0 and ac − b2 ≥ 0. Using
this fact, prove that f is convex.

4 We consider the following problem:

inf
(x,y)∈R2

f (x , y), subject to:

{
−x − y ≤ 0

−x − 2 ≤ 0.
(P)

Verify that (0, 0) is feasible and satisfies the KKT conditions.

5 Is the point (0, 0) a global solution to problem (P)?
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Exercise

Solution.

1. We use the inequality: exp(z) ≥ 1 + z , which yields:

f (x , y) ≥ x + y2 + y + x2

=
1

2
(x2 + y2) +

1

2
(x2 + 2x + 1) +

1

2
(y2 + 2y + 1)− 1

=
1

2
∥(x , y)∥2 + 1

2
(x + 1)2 +

1

2
(y + 1)2 − 1 −→

∥(x ,y)∥→∞
∞.
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Exercise

2. It holds:

∂f

∂x
= exp(x + y2) + 2x ,

∂f

∂y
= 2y exp(x + y2) + 1.

Therefore, ∇f (x , y) =

(
exp(x + y2) + 2x
2y exp(x + y2) + 1

)
.

We also have

∂2f

∂x2
= exp(x + y2) + 2,

∂2f

∂x∂y
=

∂2f

∂y∂x
= 2y exp(x + y2),

∂2f

∂y2
= 2 exp(x + y2) + 4y2 exp(x + y2).

Thus, D2f (x , y) =

(
exp(x + y2) + 2 2y exp(x + y2)
2y exp(x + y2) (2 + 4y2) exp(x + y2)

)
.
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Exercise

3. Proof of positive definiteness of D2f . It holds:

a+ c = (3 + 4y2) exp(x + y2) + 2 ≥ 0

and

ac − b2 = 2 exp(2x + 2y2) + 4(1 + 2y2) exp(x + y2) ≥ 0.

It follows that D2f (x , y) is positive semidefinite, for all (x , y).
Therefore f is a convex function.
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Exercise

4. Feasibility of (0, 0): we have 0 + 0 ≥ 0 and 0 + 2 > 0.
KKT conditions. Lagrangian:

L(x , y , λ1, λ2) = exp(x + y2)+ y + x2−λ1(x + y)−λ2(x +2).

Therefore,

∂L

∂x
(0, 0, λ1, λ2) = 1− λ1 − λ2,

∂L

∂y
(0, 0) = 1− λ1.

Taking λ1 = 1 and λ2 = 0, we have:

1 Stationarity: ∂L
∂x (0, 0, 1, 0) =

∂L
∂y (0, 0, 1, 0) = 0.

2 Sign condition: λ1 ≥ 0, λ2 ≥ 0.
3 Complementarity: the second constraint is inactive and the

corresponding Lagrange multiplier is null.
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Exercise

5. We have the following:

The cost function is convex.
The functions −(x + y) and −(x + 2) are convex.
The point (0, 0) is feasible and satisfies the KKT conditions.

Therefore (0, 0) is a global solution.
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Non-linear constraints

Exercise.

Consider:

inf
x∈R2

f (x) := −x1 − x2, s.t.

{
g1(x) = x21 + 2x22 − 3 ≤ 0

g2(x) = x1 − 1 ≤ 0.

Show that x̄ = (1, 1) is feasible

Verify that the LICQ and the KKT conditions hold at
x̄ = (1, 1).

Prove that x̄ = (1, 1) is a global solution.
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Non-linear constraints

Verification of the LICQ.

∇g1(x̄) =

(
2x̄1
4x̄2

)
=

(
2
4

)
and ∇g2(x̄) =

(
1
0

)
.

We have: E = ∅, I0(x̄) = {1, 2}. The vectors ∇g1(x̄) and ∇g2(x̄)
are linearly independent, since

det

(
2 4
1 0

)
= −4 ̸= 0.

Thus the LICQ is satisfied at x̄ .
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Non-linear constraints

KKT conditions.

Lagrangian:
L(x , λ) = (−x1 − x2) + λ1(x

2
1 + 2x22 − 3) + λ2(x1 − 1).

Stationarity condition:(
−1
−1

)
+

(
2x̄1
4x̄2

)
λ1 +

(
1
0

)
λ2 =

(
0
0

)
It is satisfied at x̄ with λ1 = 1/4 ≥ 0 and λ2 = 1/2 ≥ 0.

The sign condition is satisfied.

The complementarity condition is satisfied (all inequality
constraints are active).
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Sensitivity analysis

Consider the family of optimization problems

inf
x∈Rn

f (x), s.t.

{
hi (x) = yi , ∀i ∈ E ,
gj(x) ≤ yj , ∀j ∈ I,

(P(y))

parametrized by the vector y ∈ Rm.

Let the value function V be defined by

V (y) = val(P(y)).

A variation δyi in the i-th constraint generates a variation of
the optimal cost of λiδyi .
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Sensitivity analysis

Exercise.

A company decides to rent an engine over d days. The engine can
be used to produce two different objects. The two objects are not
produced simultaneously. Let x1 and x2 denote the times dedicated
to the production of each object. The resulting benefits (in ke)
are given by:

x1
1 + x1

and
x2

4 + x2
.
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Sensitivity analysis

1 Formulate the problem as a minimization problem.

2 Justify the existence of a solution.

3 Write the KKT conditions. What is the unit of the dual
variable?

4 Verify that x̄ = (4, 6) satisfies the KKT conditions for d = 10
days. Is it a global solution to the problem?

5 The renting cost of the engine is 70e/day. Is it of interest for
the company to rent the engine for a longer time?
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Sensitivity analysis

1. Problem:

inf
x∈R2

− x1
1 + x1

− x2
4 + x2

, s.t.


x1 + x2 = d

−x1 ≤ 0

−x2 ≤ 0

2. The feasible set is obviously compact and non-empty and the
cost function is continuous. Therefore, there exists a solution.



Reminders Optimality conditions for constrained problems

Sensitivity analysis

3. Let x̄ be a solution. Let µ ∈ R2 and λ ∈ R2 be the associated
Lagrange multipliers. Lagrangian:

L(x , µ, λ) = − x1
1 + x1

− x2
4 + x2

+µ(x1+ x2−d)−λ1x1−λ2x2.

KKT conditions:

Stationarity:

− 1

(1 + x̄1)2
+ µ− λ1 = 0, − 4

(4 + x̄2)2
+ µ− λ2 = 0.

Sign condition: λ1 ≥ 0, λ2 ≥ 0.
Complementarity: x̄1 > 0 ⇒ λ1 = 0, x̄2 > 0 ⇒ λ2 = 0.

Units: [µ] = [λ1] = [λ2] =ke/day.
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Sensitivity analysis

4. Let µ, λ be such that the KKT conditions hold true. By
complementarity condition, we necessarily have λ1 = λ2 = 0.
The stationarity condition holds true with

µ =
1

(1 + x̄1)2
=

4

(4 + x̄2)2
=

1

25
= 0.04.

The sign condition trivially holds true since the inequality
constraints are inactive. Lagrangian:

L(x , µ, λ) = − x1
1 + x1

− x2
4 + x2

+ 0.04(x1 + x2 − d).

If x1 + x2 > d , the cost associated to constraints is increased,
otherwise decreased (company rents the engine for the
d − x1 − x2 remaining days).

The point x̄ is feasible and satisfies the KKT conditions. We
have affine constraints and a convex cost function, therefore,
the KKT conditions are sufficient. The point x̄ is a global
solution.
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Sensitivity analysis

5. d is fixed.
Increasing the renting time of y days will generate a variation
of cost of µy (approximately), that is, an augmentation of the
benefit of 40e/day (less the renting price). It corresponds to
the benefit that the company can have from another firm for
renting the engine. Thus, the cost will corresponds to:

c(x , µ, λ) = − 4

1 + 4
− 6

4 + 6
− 0.04y +0.07y = −1.4+0.03y .

It would be of interest for the company to reduce the renting
time.
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And to sum up the courses ...

Necessary conditions Sufficient conditions

Abstract formulation if K compact, f ∈ C 0(K)
(exist.) then at least one solution

if K closed,
f ∈ C 0(K), coercive

then at least one solution

Necessary conditions Sufficient conditions

No constraints if x local sol., if f ∈ C 2(K), ∇f (x) = 0,
K = Rd (opt.) f ∈ C 2(K) then, D2f (x) positive def.

D2f (x) is positive semi-def. then x local sol.

Affine f convex,
constraints x local sol. then KKT then KKT=global sol.

Non-linear f convex,
constraints x local sol., LICQ then KKT h affine, g convex,

then KKT=global sol.
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