KORK ERKER ADAM ADA

Continuous optimization ENT305A

Elise Grosjean

Ensta-Paris Institut Polytechnique de Paris September 2024

KORK ERKER ADA ADA KORA

11 [Reminders](#page-1-0)

[Optimization problem](#page-1-0)

[Existence of a solution](#page-5-0)

2 [Optimality conditions for constrained problems](#page-17-0)

- **[Linear constraints](#page-17-0)**
- **[Non-linear constraints](#page-28-0)**
- [Sensitivity analysis](#page-43-0)

[Reminders](#page-1-0) [Optimality conditions for constrained problems](#page-17-0)

What is an optimization problem?

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

What is an optimization problem?

Notation.

Let $\bar{B}(\bar{x}, \varepsilon)$ denote the closed ball of center \bar{x} and radius ε .

Definition.

A feasible point \bar{x} is a local solution to (P) if and only if there exists $\epsilon > 0$ such that \bar{x} is a **global** solution to the following localized problem:

$$
\inf_{x\in\mathbb{R}^n}f(x),\quad x\in K\cap\bar{B}(\bar{x},\varepsilon).
$$

What is an optimization problem?

Constraints.

Most of the time, the feasible set K is described by

$$
K = \left\{ x \in \mathbb{R}^n \middle| \begin{array}{l} h_i(x) = 0, & \forall i \in \mathcal{E} \\ g_j(x) \leq 0, & \forall j \in \mathcal{I} \end{array} \right\},
$$

where $h: \mathbb{R}^n \to \mathbb{R}^{m_1}$, $g: \mathbb{R}^n \to \mathbb{R}^{m_2}$.

We call the expressions

- $h_i(x) = 0$: equality constraint
- $g_i(x)$ \leq 0: inequality constraint.

KORK ERKER ADA ADA KORA

11 [Reminders](#page-1-0)

- **[Optimization problem](#page-1-0)**
- \blacksquare [Existence of a solution](#page-5-0)

2 [Optimality conditions for constrained problems](#page-17-0)

- **[Linear constraints](#page-17-0)**
- **[Non-linear constraints](#page-28-0)**
- [Sensitivity analysis](#page-43-0)

Existence of a solution

Theorem 1 (existence of extreme value (Weierstrass))

Assume the following:

- \blacksquare ?
- \blacksquare ?

Then the optimization problem (P) has $(at \, least)$ one solution.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Existence of a solution

Theorem 2 (existence of extreme value (Weierstrass))

Assume the following:

- \blacksquare K is non-empty and compact (i.e. closed and bounded)
- \blacksquare f is continuous on K.

Then the optimization problem (P) has (at least) one solution.

Remarks. If $K = \{x \in \mathbb{R}^n \mid h_i(x) = 0, \forall i \in \mathcal{E}, g_j(x) \leq 0, \forall j \in \mathcal{I}\},\$ where h_i,g_j are continuous, then K is closed. In practical exercises, it is not necessary to justify the continuity of h_i or g_j .

Optimality conditions

Let us fix a continuously differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ for the whole section. Let us consider

 $\inf_{x \in \mathbb{R}^n} f(x)$ (P)

The function f is said to be **stationary** at $x \in \mathbb{R}^n$ if $\nabla f(x) = 0$.

Theorem 3 (Necessary optimality condition)

Let $\bar{x} \in \mathbb{R}^n$ be a local solution of (P) . Then, f is stationary at \bar{x} .

Remark. Stationarity is only a necessary condition!

Optimality conditions

Theorem 4

Assume that f is twice continuously differentiable. Let \bar{x} be a stationary point.

Necessary condition. If \bar{x} is a local solution of (P) , then $D^2f(\bar{x})$ is positive semi-definite, that is to say,

$$
\langle h, D^2f(\bar{x})h \rangle \geq 0, \quad \text{for all } h \in \mathbb{R}^n.
$$

Sufficient condition. If $D^2f(\bar{x})$ is **positive definite**, that is to say if $\langle h, D^2 f(\bar{x})h \rangle > 0$, for all $h \in \mathbb{R}^n \backslash \{0\}$, then \bar{x} is a local solution of (P) .

illustration

イロトメ 倒 トメ 差 トメ 差 トー ミー 2990

illustration

Descent gradient with $\alpha = 0.25$

KORK EXTERNE PROVIDE

illustration

Descent gradient $x_{k+1} = x_k + \alpha d$

Optimality conditions

Theorem 5

 \blacksquare The function f is convex if and only if

 $f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle$

for all x and $y \in \mathbb{R}^n$.

KORK EXTERNE PROVIDE

[Reminders](#page-1-0) [Optimality conditions for constrained problems](#page-17-0)

Optimality conditions

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

Optimality conditions

Theorem 6

 \blacksquare The function f is convex if and only if f is twice differentiable, and $D^2f(x)$ is symmetric **positive** semi-definite for all $x \in \mathbb{R}^n$.

KORK EXTERNE PROVIDE

Optimality conditions

Theorem 7

Assume that f is convex. Let \bar{x} be a stationary point of f. Then *it is a* global solution of (P) .

Proof. For all $x \in \mathbb{R}^n$, we have

 $f(x) > f(\bar{x}) + \langle \nabla f(\bar{x}), x - \bar{x} \rangle = f(\bar{x}).$

KORK ERKER ADA ADA KORA

11 [Reminders](#page-1-0)

- **[Optimization problem](#page-1-0)**
- **[Existence of a solution](#page-5-0)**

2 [Optimality conditions for constrained problems](#page-17-0)

[Linear constraints](#page-17-0)

- **[Non-linear constraints](#page-28-0)**
- [Sensitivity analysis](#page-43-0)

 (P)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Linear equality constraints

We investigate in this section the problem

$$
\inf_{x\in\mathbb{R}^n} f(x), \quad \text{s.t.} \begin{cases} h_i(x) = 0, & \forall i \in \mathcal{E} \\ g_j(x) \leq 0, & \forall j \in \mathcal{I}. \end{cases}
$$

\n- Let
$$
x \in \mathbb{R}^n
$$
 be feasible. Let $j \in \mathcal{I}$. We say that
\n- the inequality constraint j is active if $g_j(x) = 0$
\n- the inequality constraint j is **inactive** if $g_j(x) < 0$.
\n

Linear constraints

- Let $f: \mathbb{R}^n \to \mathbb{R}$ and let $h: \mathbb{R}^n \to \mathbb{R}^{m_1}$ and $g: \mathbb{R}^n \to \mathbb{R}^{m_2}$ be two continuously differentiable functions.
- Let the Lagrangian $L: \mathbb{R}^n \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_2} \to \mathbb{R}$ be defined by

$$
L(x, \mu, \lambda) = f(x) + \langle \mu, h(x) \rangle + \langle \lambda, g(x) \rangle
$$

= $f(x) + \sum_{i=1}^{m_1} \mu_i h_i(x) + \sum_{j=1}^{m_2} \lambda_j g_j(x).$

The variables μ , λ are referred to as **dual variables**.

Linear equality constraints

Theorem 8

Assume that h and g are affine, that it to say, there exists $A \in \mathbb{R}^{m_2 \times n}$ and $b \in \mathbb{R}^m_2$ such that

 $g(x) = Ax + b$.

Let \bar{x} be a local solution to (P) .

Then there exists $(\mu, \lambda) \in \mathbb{R}^{m_1} \times \mathbb{R}^{m_2}$ such that the following three conditions, referred to as Karush-Kuhn-Tucker (KKT) conditions, are satisfied:

- **1 Stationarity** condition: ?
- 2 Sign condition: ?
- **3 Complementarity** condition: ?

Linear equality constraints

Theorem 9

Assume that h and g are affine, that it to say, there exists $A \in \mathbb{R}^{m_2 \times n}$ and $b \in \mathbb{R}^m_2$ such that

 $g(x) = Ax + b$.

Let \bar{x} be a local solution to (P) .

Then there exists $(\mu, \lambda) \in \mathbb{R}^{m_1} \times \mathbb{R}^{m_2}$ such that the following three conditions, referred to as Karush-Kuhn-Tucker (KKT) conditions, are satisfied:

- **1 Stationarity** condition: $\nabla_{\mathbf{x}}L(\bar{\mathbf{x}}, \mu, \lambda) = 0$.
- **2 Sign** condition: for all $j \in \mathcal{I}$, $\lambda_i \geq 0$.
- **3 Complementarity** condition: for all $j \in \mathcal{I}$, $g_i(\bar{x}) < 0 \Longrightarrow \lambda_i = 0.$

[Reminders](#page-1-0) [Optimality conditions for constrained problems](#page-17-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Linear constraints

Illustration.

KKT stationarity

メロトメ 御 トメ 差 トメ 差 ト È 2990 [Reminders](#page-1-0) [Optimality conditions for constrained problems](#page-17-0)

メロトメ 御 トメ 差 トメ 差 ト

È

 2990

KKT stationarity

Linear constraints

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Linear constraints

Example 2(a). Case of one (active) inequality equality constraint:

Linear constraints

Example 2(b). Case of one (inactive) inequality equality constraint:

KORK ERKER ADA ADA KORA

11 [Reminders](#page-1-0)

- **[Optimization problem](#page-1-0)**
- **[Existence of a solution](#page-5-0)**

2 [Optimality conditions for constrained problems](#page-17-0)

- **[Linear constraints](#page-17-0)**
- **[Non-linear constraints](#page-28-0)**
- [Sensitivity analysis](#page-43-0)

Non-linear constraints

Definition 10

Let \bar{x} be a feasible point. Let the set of **active inequality** constraints $\mathcal{I}_0(\bar{x})$ be defined by

 $\mathcal{I}_0(\bar{\mathsf{x}}) = \big\{ j\in\mathcal{I}\,|\, \mathsf{g}_j(\bar{\mathsf{x}}) = 0 \big\}.$

We say that the Linear Independence Qualification Condition **(LICQ)** holds at \bar{x} , if the following set of vectors is linearly indepedent:

 $\big\{\nabla h_i(\bar{x})\big\}_{i\in\mathcal{E}}\cup\big\{\nabla g_j(\bar{x})\big\}_{j\in\mathcal{I}_0(\bar{x})}$

Non-linear constraints

KORK EXTERNE PROVIDE

Non-linear constraints

Theorem 11

Let \bar{x} be a **local solution** to (P) . Assume that the LICQ holds at \bar{x} . Then there exists a unique (μ, λ) such that the KKT conditions are satisfied.

Remarks.

■ At a numerical level, a solution that does not satisfy the LICQ is hard to compute.

Non-linear constraints

Example 4.

Consider the problem

$$
\inf_{x \in \mathbb{R}} x, \quad \text{subject to: } x^2 \leq 0.
$$

Unique feasible point: $\bar{x} = 0$, thus the solution.

Lagrangian:

$$
L(x,\lambda)=x+\lambda x^2.
$$

At zero:

$$
\nabla_x L(0,\lambda) = 1 + 2\lambda \bar{x} = 1 \neq 0.
$$

The LICQ is not satisfied, since $\nabla g_1(0) = 0$.

Non-linear constraints

Theorem 12

Assume that

- **f** is convex
- **■** for all $i \in \mathcal{E}$, the map $x \mapsto h_i(x)$ is **affine**
- **■** for all $j \in \mathcal{I}$, the map $x \mapsto g_j(x)$ is **convex**.

Then any feasible point \bar{x} satisfying the KKT conditions is a global solution to the problem.

Remark. The result holds whether the LICQ holds or not at \bar{x} .

Exercise

Exercise. Consider the function $f : (x, y) \in \mathbb{R}^2 \mapsto \exp(x + y^2) + y + x^2$.

- **1** Prove that f is coercive. Indication: Use $\exp(z) \geq 1 + z$
- 2 Compute $\nabla f(x,y)$ and $\nabla^2 f(x,y)$.
- **3** We recall that a symmetric matrix of size 2 of the form $\begin{pmatrix} a & b \ b & c \end{pmatrix}$ is positive semidefinite if and only if $a+c\geq 0$ and $ac-b^2\geq 0.$ Using this fact, prove that f is convex.
- 4 We consider the following problem:

$$
\inf_{(x,y)\in\mathbb{R}^2} f(x,y), \quad \text{subject to:} \begin{cases} -x-y \leq 0 \\ -x-2 \leq 0. \end{cases} \qquad (\mathcal{P})
$$

Verify that (0, 0) is feasible and satisfies the KKT conditions. **5** Is the point $(0,0)$ a global solution to problem (\mathcal{P}) ?

> イロメ イ何メ イヨメ イヨメ Ω

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Solution.

1. We use the inequality: $exp(z) \ge 1 + z$, which yields:

$$
f(x,y) \ge x + y^2 + y + x^2
$$

= $\frac{1}{2}(x^2 + y^2) + \frac{1}{2}(x^2 + 2x + 1) + \frac{1}{2}(y^2 + 2y + 1) - 1$
= $\frac{1}{2}||(x,y)||^2 + \frac{1}{2}(x+1)^2 + \frac{1}{2}(y+1)^2 - 1$
= $\frac{1}{2}||(x,y)||^2 + \frac{1}{2}(x+1)^2 + \frac{1}{2}(y+1)^2 - 1$

Exercise

2. It holds:

$$
\frac{\partial f}{\partial x} = \exp(x + y^2) + 2x, \qquad \frac{\partial f}{\partial y} = 2y \exp(x + y^2) + 1.
$$

Therefore, $\nabla f(x, y) = \begin{pmatrix} \exp(x + y^2) + 2x \\ 2y \exp(x + y^2) + 1 \end{pmatrix}.$

We also have

 \sim

$$
\frac{\partial^2 f}{\partial x^2} = \exp(x + y^2) + 2, \qquad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = 2y \exp(x + y^2),
$$

$$
\frac{\partial^2 f}{\partial y^2} = 2 \exp(x + y^2) + 4y^2 \exp(x + y^2).
$$

Thus,
$$
D^2 f(x, y) = \begin{pmatrix} \exp(x + y^2) + 2 & 2y \exp(x + y^2) \\ 2y \exp(x + y^2) & (2 + 4y^2) \exp(x + y^2) \end{pmatrix}
$$
.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

3. Proof of positive definiteness of D^2f . It holds:

$$
a + c = (3 + 4y^2) \exp(x + y^2) + 2 \ge 0
$$

and

$$
ac - b2 = 2 \exp(2x + 2y2) + 4(1 + 2y2) \exp(x + y2) \ge 0.
$$

It follows that $D^2f(x, y)$ is positive semidefinite, for all (x, y) . Therefore f is a convex function.

Exercise

4. Feasibility of $(0, 0)$: we have $0 + 0 > 0$ and $0 + 2 > 0$. KKT conditions. Lagrangian:

$$
L(x, y, \lambda_1, \lambda_2) = \exp(x + y^2) + y + x^2 - \lambda_1(x + y) - \lambda_2(x + 2).
$$

Therefore,

$$
\frac{\partial L}{\partial x}(0,0,\lambda_1,\lambda_2)=1-\lambda_1-\lambda_2,\qquad \frac{\partial L}{\partial y}(0,0)=1-\lambda_1.
$$

Taking $\lambda_1 = 1$ and $\lambda_2 = 0$, we have:

- $\frac{1}{\omega}$ Stationarity: $\frac{\partial L}{\partial x}(0,0,1,0)=\frac{\partial L}{\partial y}(0,0,1,0)=0.$
- 2 Sign condition: $\lambda_1 > 0$, $\lambda_2 > 0$.
- 3 Complementarity: the second constraint is inactive and the corresponding Lagrange multiplier is null.

- 5. We have the following:
	- The cost function is convex.
	- The functions $-(x + y)$ and $-(x + 2)$ are convex.
	- \blacksquare The point $(0, 0)$ is feasible and satisfies the KKT conditions.

Therefore (0, 0) is a global solution.

Non-linear constraints

Exercise.

Consider:

$$
\inf_{x \in \mathbb{R}^2} f(x) := -x_1 - x_2, \quad \text{s.t.} \quad \begin{cases} g_1(x) = x_1^2 + 2x_2^2 - 3 \leq 0 \\ g_2(x) = x_1 - 1 \leq 0. \end{cases}
$$

- Show that $\bar{x} = (1, 1)$ is feasible
- Verify that the LICQ and the KKT conditions hold at $\bar{x} = (1, 1).$
- Prove that $\bar{x} = (1, 1)$ is a global solution.

KORK EXTERNE PROVIDE

Non-linear constraints

Verification of the LICQ.

$$
\nabla g_1(\bar x)=\begin{pmatrix}2\bar x_1\\4\bar x_2\end{pmatrix}=\begin{pmatrix}2\\4\end{pmatrix}\quad\text{and}\quad\nabla g_2(\bar x)=\begin{pmatrix}1\\0\end{pmatrix}.
$$

We have: $\mathcal{E} = \emptyset$, $\mathcal{I}_0(\bar{x}) = \{1, 2\}$. The vectors $\nabla g_1(\bar{x})$ and $\nabla g_2(\bar{x})$ are linearly independent, since

$$
\det\begin{pmatrix}2 & 4\\1 & 0\end{pmatrix} = -4 \neq 0.
$$

Thus the LICQ is satisfied at \bar{x} .

Non-linear constraints

KKT conditions.

- **Lagrangian:** $L(x, \lambda) = (-x_1 - x_2) + \lambda_1(x_1^2 + 2x_2^2 - 3) + \lambda_2(x_1 - 1).$
- Stationarity condition:

$$
\begin{pmatrix} -1 \\ -1 \end{pmatrix} + \begin{pmatrix} 2\bar{x}_1 \\ 4\bar{x}_2 \end{pmatrix} \lambda_1 + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \lambda_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$

It is satisfied at \bar{x} with $\lambda_1 = 1/4 \geq 0$ and $\lambda_2 = 1/2 \geq 0$.

- The sign condition is satisfied.
- The complementarity condition is satisfied (all inequality constraints are active).

KORK ERKER ADA ADA KORA

11 [Reminders](#page-1-0)

- **[Optimization problem](#page-1-0)**
- **[Existence of a solution](#page-5-0)**

2 [Optimality conditions for constrained problems](#page-17-0)

- **[Linear constraints](#page-17-0)**
- **[Non-linear constraints](#page-28-0)**
- [Sensitivity analysis](#page-43-0)

Sensitivity analysis

■ Consider the family of optimization problems

$$
\inf_{x \in \mathbb{R}^n} f(x), \quad \text{s.t.} \quad \begin{cases} h_i(x) = y_i, & \forall i \in \mathcal{E}, \\ g_j(x) \leq y_j, & \forall j \in \mathcal{I}, \end{cases} \tag{P(y)}
$$

parametrized by the vector $y \in \mathbb{R}^m$.

 \blacksquare Let the **value function** V be defined by

$$
V(y) = \mathsf{val}(P(y)).
$$

A variation δy_i in the *i-*th constraint generates a variation of the optimal cost of $\lambda_i \delta y_i$.

KORK EXTERNE PROVIDE

Sensitivity analysis

Exercise.

A company decides to rent an engine over d days. The engine can be used to produce two different objects. The two objects are not produced simultaneously. Let x_1 and x_2 denote the times dedicated to the production of each object. The resulting benefits (in $k \in \mathbb{R}$) are given by:

$$
\frac{x_1}{1+x_1} \quad \text{and} \quad \frac{x_2}{4+x_2}.
$$

Sensitivity analysis

- **1** Formulate the problem as a minimization problem.
- 2 Justify the existence of a solution.
- **3** Write the KKT conditions. What is the unit of the dual variable?
- 4 Verify that $\bar{x} = (4, 6)$ satisfies the KKT conditions for $d = 10$ days. Is it a global solution to the problem?
- **5** The renting cost of the engine is $70 \in \text{/day}$. Is it of interest for the company to rent the engine for a longer time?

KORK ERKER ADA ADA KORA

Sensitivity analysis

1. Problem:

$$
\inf_{x \in \mathbb{R}^2} \ -\frac{x_1}{1+x_1} - \frac{x_2}{4+x_2}, \quad \text{s.t.} \begin{cases} x_1 + x_2 = d \\ -x_1 \leq 0 \\ -x_2 \leq 0 \end{cases}
$$

2. The feasible set is obviously compact and non-empty and the cost function is continuous. Therefore, there exists a solution.

KORK EXTERNE PROVIDE

Sensitivity analysis

3. Let \bar{x} be a solution. Let $\mu\in\mathbb{R}^2$ and $\lambda\in\mathbb{R}^2$ be the associated Lagrange multipliers. Lagrangian:

$$
L(x, \mu, \lambda) = -\frac{x_1}{1 + x_1} - \frac{x_2}{4 + x_2} + \mu(x_1 + x_2 - d) - \lambda_1 x_1 - \lambda_2 x_2.
$$

KKT conditions:

Stationarity:

$$
-\frac{1}{(1+\bar{x}_1)^2}+\mu-\lambda_1=0, \qquad -\frac{4}{(4+\bar{x}_2)^2}+\mu-\lambda_2=0.
$$

■ Sign condition: $\lambda_1 \geq 0$, $\lambda_2 \geq 0$. Gomplementarity: $\bar{x}_1 > 0 \Rightarrow \lambda_1 = 0$, $\bar{x}_2 > 0 \Rightarrow \lambda_2 = 0$.

■ Units:
$$
[\mu] = [\lambda_1] = [\lambda_2] = k \in \text{day}.
$$

Sensitivity analysis

4. Let μ, λ be such that the KKT conditions hold true. By complementarity condition, we necessarily have $\lambda_1 = \lambda_2 = 0$. The stationarity condition holds true with

$$
\mu = \frac{1}{(1+\bar{x}_1)^2} = \frac{4}{(4+\bar{x}_2)^2} = \frac{1}{25} = 0.04.
$$

The sign condition trivially holds true since the inequality constraints are inactive. Lagrangian:

$$
L(x, \mu, \lambda) = -\frac{x_1}{1 + x_1} - \frac{x_2}{4 + x_2} + 0.04(x_1 + x_2 - d).
$$

If $x_1 + x_2 > d$, the cost associated to constraints is increased, otherwise decreased (company rents the engine for the $d - x_1 - x_2$ remaining days).

The point \bar{x} is feasible and satisfies the KKT conditions. We have affine constraints and a convex cost function, therefore, the KKT conditions are sufficient. The point \bar{x} is a global **KORK ERREPADEMENT** solution.

Sensitivity analysis

5. d is fixed.

Increasing the renting time of y days will generate a variation of cost of $\mu\nu$ (approximately), that is, an augmentation of the benefit of $40 \in /$ day (less the renting price). It corresponds to the benefit that the company can have from another firm for renting the engine. Thus, the cost will corresponds to:

$$
c(\overline{x}, \mu, \lambda) = -\frac{4}{1+4} - \frac{6}{4+6} - 0.04y + 0.07y = -1.4 + 0.03y.
$$

It would be of interest for the company to reduce the renting time.

And to sum up the courses ...

