▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Continuous optimization ENT305A

Elise Grosjean

Ensta-Paris Institut Polytechnique de Paris September 2024

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Reminders

Optimization problem

Existence of a solution

2 Optimality conditions for constrained problems

- Linear constraints
- Non-linear constraints
- Sensitivity analysis

What is an optimization problem?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

What is an optimization problem?

Notation.

Let $\overline{B}(\overline{x},\varepsilon)$ denote the closed ball of center \overline{x} and radius ε .

Definition.

A feasible point \bar{x} is a local solution to (*P*) if and only if there exists $\varepsilon > 0$ such that \bar{x} is a **global** solution to the following **localized** problem:

$$\inf_{x\in\mathbb{R}^n}f(x),\quad x\in {\cal K}\cap\bar{B}(\bar{x},\varepsilon).$$

What is an optimization problem?

Constraints.

Most of the time, the feasible set K is described by

$$\mathcal{K} = \left\{ x \in \mathbb{R}^n \left| egin{array}{c} h_i(x) = 0, & orall i \in \mathcal{E} \\ g_j(x) \leq 0, & orall j \in \mathcal{I} \end{array}
ight\},$$

where $h \colon \mathbb{R}^n \to \mathbb{R}^{m_1}$, $g \colon \mathbb{R}^n \to \mathbb{R}^{m_2}$.

We call the expressions

- $h_i(x) = 0$: equality constraint
- $g_j(x) \le 0$: inequality constraint.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

1 Reminders

- Optimization problem
- Existence of a solution

2 Optimality conditions for constrained problems

- Linear constraints
- Non-linear constraints
- Sensitivity analysis

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Existence of a solution

Theorem 1 (existence of extreme value (Weierstrass))

Assume the following:

- ?
- 2

Then the optimization problem (P) has $(at \ least)$ one solution.

Existence of a solution

Theorem 2 (existence of extreme value (Weierstrass))

Assume the following:

- K is non-empty and compact (i.e. closed and bounded)
- f is continuous on K.

Then the optimization problem (P) has $(at \ least)$ one solution.

Remarks. If $K = \{x \in \mathbb{R}^n | h_i(x) = 0, \forall i \in \mathcal{E}, g_j(x) \le 0, \forall j \in \mathcal{I}\}$, where h_i, g_j are continuous, then K is closed. In practical exercises, it is not necessary to justify the continuity of h_i or g_j .

Optimality conditions

Let us fix a continuously differentiable function $f: \mathbb{R}^n \to \mathbb{R}$ for the whole section. Let us consider

 $\inf_{x\in\mathbb{R}^n}f(x) \tag{P}$

The function f is said to be **stationary** at $x \in \mathbb{R}^n$ if $\nabla f(x) = 0$.

Theorem 3 (Necessary optimality condition)

Let $\bar{x} \in \mathbb{R}^n$ be a local solution of (P). Then, f is stationary at \bar{x} .

Remark. Stationarity is only a necessary condition!

Theorem 4

Assume that f is twice continuously differentiable. Let \bar{x} be a stationary point.

Necessary condition.
 If x̄ is a local solution of (P), then D²f(x̄) is positive semi-definite, that is to say,

 $\langle h, D^2 f(\bar{x})h \rangle \ge 0$, for all $h \in \mathbb{R}^n$.

• Sufficient condition. If $D^2 f(\bar{x})$ is positive definite, that is to say if

 $\langle h, D^2 f(\bar{x})h \rangle > 0$, for all $h \in \mathbb{R}^n \setminus \{0\}$,

then \bar{x} is a local solution of (P).

illustration

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

illustration

Descent gradient with $\alpha = 0.25$

illustration

Descent gradient $x_{k+1} = x_k + \alpha d$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem 5

The function f is convex if and only if

 $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle,$

for all x and $y \in \mathbb{R}^n$.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 - のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Theorem 6

The function f is convex if and only if f is twice differentiable, and $D^2f(x)$ is symmetric **positive semi-definite** for all $x \in \mathbb{R}^n$.

Optimality conditions

Theorem 7

Assume that f is convex. Let \bar{x} be a stationary point of f. Then it is a global solution of (P).

Proof. For all $x \in \mathbb{R}^n$, we have

 $f(x) \geq f(\bar{x}) + \langle \nabla f(\bar{x}), x - \bar{x} \rangle = f(\bar{x}).$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

1 Reminders

- Optimization problem
- Existence of a solution

2 Optimality conditions for constrained problems

Linear constraints

- Non-linear constraints
- Sensitivity analysis

(P)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Linear equality constraints

We investigate in this section the problem

$$\inf_{x\in\mathbb{R}^n}f(x), \quad \text{s.t.} \quad \left\{ \begin{array}{ll} h_i(x)=0, \quad \forall i\in\mathcal{E}\\ g_j(x)\leq 0, \quad \forall j\in\mathcal{I}. \end{array} \right.$$

Linear constraints

- Let $f : \mathbb{R}^n \to \mathbb{R}$ and let $h : \mathbb{R}^n \to \mathbb{R}^{m_1}$ and $g : \mathbb{R}^n \to \mathbb{R}^{m_2}$ be two continuously differentiable functions.
- Let the Lagrangian $L: \mathbb{R}^n \times \mathbb{R}^{m_1} \times \mathbb{R}^{m_2} \to \mathbb{R}$ be defined by

$$L(x, \mu, \lambda) = f(x) + \langle \mu, h(x) \rangle + \langle \lambda, g(x) \rangle$$

= $f(x) + \sum_{i=1}^{m_1} \mu_i h_i(x) + \sum_{j=1}^{m_2} \lambda_j g_j(x).$

The variables μ , λ are referred to as **dual variables**.

Linear equality constraints

Theorem 8

Assume that h and g are affine, that it to say, there exists $A \in \mathbb{R}^{m_2 \times n}$ and $b \in \mathbb{R}_2^m$ such that

g(x) = Ax + b.

Let \bar{x} be a local solution to (P).

Then there exists $(\mu, \lambda) \in \mathbb{R}^{m_1} \times \mathbb{R}^{m_2}$ such that the following three conditions, referred to as Karush-Kuhn-Tucker (KKT) conditions, are satisfied:

- **1 Stationarity** condition: ?
- **2 Sign** condition: ?

3 Complementarity condition: ?

Linear equality constraints

Theorem 9

Assume that h and g are affine, that it to say, there exists $A \in \mathbb{R}^{m_2 \times n}$ and $b \in \mathbb{R}_2^m$ such that

g(x)=Ax+b.

Let \bar{x} be a local solution to (P).

Then there exists $(\mu, \lambda) \in \mathbb{R}^{m_1} \times \mathbb{R}^{m_2}$ such that the following three conditions, referred to as Karush-Kuhn-Tucker (KKT) conditions, are satisfied:

- **1** Stationarity condition: $\nabla_{\mathbf{x}} L(\bar{\mathbf{x}}, \mu, \lambda) = 0$.
- **2** Sign condition: for all $j \in \mathcal{I}$, $\lambda_j \geq 0$.
- **3** Complementarity condition: for all $j \in \mathcal{I}$, $g_j(\bar{x}) < 0 \Longrightarrow \lambda_j = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Linear constraints

Illustration.

KKT stationarity

KKT stationarity

Linear constraints

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Linear constraints

Example 2(a). Case of one (active) inequality equality constraint:

Linear constraints

Example 2(b). Case of **one (inactive) inequality equality constraint**:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

1 Reminders

- Optimization problem
- Existence of a solution

2 Optimality conditions for constrained problems

- Linear constraints
- Non-linear constraints
- Sensitivity analysis

Non-linear constraints

Definition 10

Let \bar{x} be a feasible point. Let the set of **active inequality** constraints $\mathcal{I}_0(\bar{x})$ be defined by

$$\mathcal{I}_0(\bar{x}) = \big\{ j \in \mathcal{I} \, | \, g_j(\bar{x}) = 0 \big\}.$$

We say that the **Linear Independence Qualification Condition** (LICQ) holds at \bar{x} , if the following set of vectors is linearly independent:

 $\left\{\nabla h_i(\bar{x})\right\}_{i\in\mathcal{E}}\cup\left\{\nabla g_j(\bar{x})\right\}_{j\in\mathcal{I}_0(\bar{x})}$

Non-linear constraints

Non-linear constraints

Theorem 11

Let \bar{x} be a local solution to (P). Assume that the LICQ holds at \bar{x} . Then there exists a unique (μ, λ) such that the **KKT** conditions are satisfied.

Remarks.

At a numerical level, a solution that does not satisfy the LICQ is hard to compute.

Non-linear constraints

Example 4.

Consider the problem

$$\inf_{x\in\mathbb{R}}x, \quad \text{subject to: } x^2\leq 0.$$

Unique feasible point: $\bar{x} = 0$, thus the solution.

Lagrangian:

$$L(x,\lambda)=x+\lambda x^2.$$

At zero:

$$abla_{\mathbf{x}}L(\mathbf{0},\lambda)=1+2\lambda ar{\mathbf{x}}=1
eq \mathbf{0}.$$

The LICQ is not satisfied, since $\nabla g_1(0) = 0$.

Non-linear constraints

Theorem 12

Assume that

- f is convex
- for all $i \in \mathcal{E}$, the map $x \mapsto h_i(x)$ is affine
- for all $j \in \mathcal{I}$, the map $x \mapsto g_j(x)$ is convex.

Then any feasible point \bar{x} satisfying the **KKT conditions** is a **global solution** to the problem.

Remark. The result holds whether the LICQ holds or not at \bar{x} .

ヘロマ ヘヨマ ヘヨマ

Exercise

Exercise. Consider the function $f: (x, y) \in \mathbb{R}^2 \mapsto \exp(x + y^2) + y + x^2$.

1 Prove that f is coercive. Indication: Use $\exp(z) \ge 1 + z$

2 Compute
$$\nabla f(x, y)$$
 and $\nabla^2 f(x, y)$.

3 We recall that a symmetric matrix of size 2 of the form $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$ is positive semidefinite if and only if $a + c \ge 0$ and $ac - b^2 \ge 0$. Using this fact, prove that f is convex.

4 We consider the following problem:

$$\inf_{(x,y)\in\mathbb{R}^2} f(x,y), \quad \text{subject to:} \quad \left\{ \begin{array}{l} -x-y \leq 0 \\ -x-2 \leq 0. \end{array} \right. \tag{\mathcal{P}} \right.$$

Verify that (0,0) is feasible and satisfies the KKT conditions. 5 Is the point (0,0) a global solution to problem (\mathcal{P}) ?

a a

Solution.

1. We use the inequality: $\exp(z) \ge 1 + z$, which yields:

$$\begin{split} f(x,y) &\geq x+y^2+y+x^2 \\ &= \frac{1}{2}(x^2+y^2) + \frac{1}{2}(x^2+2x+1) + \frac{1}{2}(y^2+2y+1) - 1 \\ &= \frac{1}{2}\|(x,y)\|^2 + \frac{1}{2}(x+1)^2 + \frac{1}{2}(y+1)^2 - 1 \underset{\|(x,y)\| \to \infty}{\longrightarrow} \infty. \end{split}$$

Exercise

2. It holds:

$$\frac{\partial f}{\partial x} = \exp(x + y^2) + 2x, \qquad \frac{\partial f}{\partial y} = 2y \exp(x + y^2) + 1.$$

Therefore, $\nabla f(x, y) = \begin{pmatrix} \exp(x + y^2) + 2x \\ 2y \exp(x + y^2) + 1 \end{pmatrix}.$

We also have

$$\frac{\partial^2 f}{\partial x^2} = \exp(x+y^2) + 2, \qquad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = 2y \exp(x+y^2),$$

$$\frac{\partial^2 f}{\partial y^2} = 2 \exp(x + y^2) + 4y^2 \exp(x + y^2).$$

Thus,
$$D^2 f(x, y) = \begin{pmatrix} \exp(x + y^2) + 2 & 2y \exp(x + y^2) \\ 2y \exp(x + y^2) & (2 + 4y^2) \exp(x + y^2) \end{pmatrix}$$
.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

3. Proof of positive definiteness of $D^2 f$. It holds:

$$a + c = (3 + 4y^2) \exp(x + y^2) + 2 \ge 0$$

and

$$ac - b^2 = 2\exp(2x + 2y^2) + 4(1 + 2y^2)\exp(x + y^2) \ge 0.$$

It follows that $D^2 f(x, y)$ is positive semidefinite, for all (x, y). Therefore f is a convex function.

Exercise

4. Feasibility of (0,0): we have $0 + 0 \ge 0$ and 0 + 2 > 0. KKT conditions. Lagrangian:

$$L(x, y, \lambda_1, \lambda_2) = \exp(x+y^2) + y + x^2 - \lambda_1(x+y) - \lambda_2(x+2).$$

Therefore,

$$rac{\partial L}{\partial x}(0,0,\lambda_1,\lambda_2)=1-\lambda_1-\lambda_2,\qquad rac{\partial L}{\partial y}(0,0)=1-\lambda_1.$$

Taking $\lambda_1 = 1$ and $\lambda_2 = 0$, we have:

- **1** Stationarity: $\frac{\partial L}{\partial x}(0,0,1,0) = \frac{\partial L}{\partial y}(0,0,1,0) = 0.$
- **2** Sign condition: $\lambda_1 \ge 0, \ \lambda_2 \ge 0$.
- 3 Complementarity: the second constraint is inactive and the corresponding Lagrange multiplier is null.

- 5. We have the following:
 - The cost function is convex.
 - The functions -(x + y) and -(x + 2) are convex.
 - The point (0,0) is feasible and satisfies the KKT conditions.

Therefore (0,0) is a global solution.

Non-linear constraints

Exercise.

Consider:

$$\inf_{x\in\mathbb{R}^2}f(x):=-x_1-x_2, \quad ext{s.t.} \; \left\{ egin{array}{cc} g_1(x)=&x_1^2+2x_2^2-3&\leq 0\ g_2(x)=&x_1-1&\leq 0. \end{array}
ight.$$

- Show that $\bar{x} = (1, 1)$ is feasible
- Verify that the LICQ and the KKT conditions hold at $\bar{x} = (1, 1)$.
- Prove that $\bar{x} = (1, 1)$ is a global solution.

Non-linear constraints

Verification of the LICQ.

$$abla g_1(ar x) = \begin{pmatrix} 2ar x_1 \\ 4ar x_2 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix} \quad ext{and} \quad
abla g_2(ar x) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

We have: $\mathcal{E} = \emptyset$, $\mathcal{I}_0(\bar{x}) = \{1, 2\}$. The vectors $\nabla g_1(\bar{x})$ and $\nabla g_2(\bar{x})$ are linearly independent, since

$$\det \begin{pmatrix} 2 & 4 \\ 1 & 0 \end{pmatrix} = -4 \neq 0.$$

Thus the LICQ is satisfied at \bar{x} .

Non-linear constraints

KKT conditions.

- Lagrangian: $L(x, \lambda) = (-x_1 - x_2) + \lambda_1(x_1^2 + 2x_2^2 - 3) + \lambda_2(x_1 - 1).$
- Stationarity condition:

$$\begin{pmatrix} -1 \\ -1 \end{pmatrix} + \begin{pmatrix} 2\bar{x}_1 \\ 4\bar{x}_2 \end{pmatrix} \lambda_1 + \begin{pmatrix} 1 \\ 0 \end{pmatrix} \lambda_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

It is satisfied at \bar{x} with $\lambda_1 = 1/4 \ge 0$ and $\lambda_2 = 1/2 \ge 0$.

- The sign condition is satisfied.
- The complementarity condition is satisfied (all inequality constraints are active).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

1 Reminders

- Optimization problem
- Existence of a solution

2 Optimality conditions for constrained problems

- Linear constraints
- Non-linear constraints
- Sensitivity analysis

Sensitivity analysis

Consider the family of optimization problems

$$\inf_{x \in \mathbb{R}^n} f(x), \quad \text{s.t.} \quad \left\{ \begin{array}{ll} h_i(x) = y_i, \quad \forall i \in \mathcal{E}, \\ g_j(x) \le y_j, \quad \forall j \in \mathcal{I}, \end{array} \right. \tag{$P(y)$}$$

parametrized by the vector $y \in \mathbb{R}^m$.

• Let the value function V be defined by

$$V(y) = \operatorname{val}(P(y)).$$

 A variation δy_i in the *i*-th constraint generates a variation of the optimal cost of λ_iδy_i.

Sensitivity analysis

Exercise.

A company decides to rent an engine over d days. The engine can be used to produce two different objects. The two objects are not produced simultaneously. Let x_1 and x_2 denote the times dedicated to the production of each object. The resulting benefits (in $k \in$) are given by:

$$rac{x_1}{1+x_1}$$
 and $rac{x_2}{4+x_2}$

Sensitivity analysis

- **1** Formulate the problem as a minimization problem.
- 2 Justify the existence of a solution.
- Write the KKT conditions. What is the unit of the dual variable?
- 4 Verify that $\bar{x} = (4, 6)$ satisfies the KKT conditions for d = 10 days. Is it a global solution to the problem?
- 5 The renting cost of the engine is 70€/day. Is it of interest for the company to rent the engine for a longer time?

Sensitivity analysis

1. Problem:

$$\inf_{x \in \mathbb{R}^2} -\frac{x_1}{1+x_1} - \frac{x_2}{4+x_2}, \quad \text{s.t.} \begin{cases} x_1 + x_2 = d \\ -x_1 \le 0 \\ -x_2 \le 0 \end{cases}$$

2. The feasible set is obviously compact and non-empty and the cost function is continuous. Therefore, there exists a solution.

Sensitivity analysis

3. Let \bar{x} be a solution. Let $\mu \in \mathbb{R}^2$ and $\lambda \in \mathbb{R}^2$ be the associated Lagrange multipliers. Lagrangian:

$$L(x,\mu,\lambda) = -\frac{x_1}{1+x_1} - \frac{x_2}{4+x_2} + \mu(x_1+x_2-d) - \lambda_1 x_1 - \lambda_2 x_2.$$

KKT conditions:

Stationarity:

$$-rac{1}{(1+ar{x}_1)^2}+\mu-\lambda_1=0, \qquad -rac{4}{(4+ar{x}_2)^2}+\mu-\lambda_2=0.$$

 $\begin{array}{ll} \textbf{ Sign condition: } \lambda_1 \geq \textbf{0}, \ \lambda_2 \geq \textbf{0}. \\ \textbf{ Complementarity: } \ \bar{x}_1 > \textbf{0} \Rightarrow \lambda_1 = \textbf{0}, \ \bar{x}_2 > \textbf{0} \Rightarrow \lambda_2 = \textbf{0}. \end{array}$

• Units:
$$[\mu] = [\lambda_1] = [\lambda_2] = \mathsf{k} \in /\mathsf{day}.$$

Sensitivity analysis

4. Let μ, λ be such that the KKT conditions hold true. By complementarity condition, we necessarily have $\lambda_1 = \lambda_2 = 0$. The stationarity condition holds true with

$$\mu = \frac{1}{(1+\bar{x}_1)^2} = \frac{4}{(4+\bar{x}_2)^2} = \frac{1}{25} = 0.04.$$

The sign condition trivially holds true since the inequality constraints are inactive. Lagrangian:

$$L(x, \mu, \lambda) = -\frac{x_1}{1+x_1} - \frac{x_2}{4+x_2} + 0.04(x_1 + x_2 - d).$$

If $x_1 + x_2 > d$, the cost associated to constraints is increased, otherwise decreased (company rents the engine for the $d - x_1 - x_2$ remaining days).

The point \bar{x} is feasible and satisfies the KKT conditions. We have affine constraints and a convex cost function, therefore, the KKT conditions are sufficient. The point \bar{x} is a global solution.

Sensitivity analysis

5. d is fixed.

Increasing the renting time of y days will generate a variation of cost of μy (approximately), that is, an augmentation of the benefit of $40 \in /day$ (less the renting price). It corresponds to the benefit that the company can have from another firm for renting the engine. Thus, the cost will corresponds to:

$$c(\overline{x},\mu,\lambda) = -rac{4}{1+4} - rac{6}{4+6} - 0.04y + 0.07y = -1.4 + 0.03y.$$

It would be of interest for the company to reduce the renting time.

And to sum up the courses ...

	Necessary conditions	Sufficient conditions
Abstract formulation		if K compact, $f \in C^0(K)$
(exist.)		then at least one solution
		if K closed,
		$f \in C^0(K)$, coercive
		then at least one solution

	Necessary conditions	Sufficient conditions
No constraints	if \overline{x} local sol.,	if $f \in C^2(K)$, $\nabla f(\overline{x}) = 0$,
$K = \mathbb{R}^d$ (opt.)	$f\in \mathcal{C}^2(\mathcal{K})$ then,	$D^2 f(\overline{x})$ positive def.
	$D^2 f(\overline{x})$ is positive semi-def.	then \overline{x} local sol.
Affine		f convex,
constraints	\overline{x} local sol. then KKT	then KKT=global sol.
Non-linear		f convex,
constraints	\overline{x} local sol., LICQ then KKT	h affine, g convex,
		then KKT=global sol.