◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Continuous optimization ENT 305

Elise Grosjean

Ensta-Paris Institut Polytechnique de Paris November 9, 2021

	Necessary conditions	Sufficient conditions
Abstract formulation		if K compact, $f \in C^0(K)$
(exist.)		then at least one solution
		if K closed,
		$f \in C^0(K)$, coercive
		then at least one solution

	Necessary conditions	Sufficient conditions
No constraints	if \overline{x} local sol.,	if $f \in C^2(K)$, $\nabla f(\overline{x}) = 0$,
$K = \mathbb{R}^d$ (opt.)	$f\in \mathcal{C}^2(K)$ then,	$D^2 f(\overline{x})$ positive def.
	$D^2 f(\overline{x})$ is positive semi-def.	then \overline{x} local sol.
Affine		f convex,
constraints	\overline{x} local sol. then KKT	then KKT=global sol.
Non-linear		f convex,
constraints	\overline{x} local sol., LICQ then KKT	h affine, g convex,
		then KKT=global sol.

・ロト ・ 目 ・ ・ ヨト ・ ヨト ・ シック

Consider the following optimization problem:

$$\inf_{(x,y,z)\in\mathbb{R}^3} \exp(x+y+z-2) - 5x - 2y + \gamma z, \quad \text{subject to:} \begin{cases} x^2 + \frac{1}{2}y + z \le \frac{3}{2} \\ x \ge 0 \\ y \ge 0 \\ z \ge 0. \end{cases}$$

For the moment $\gamma = 0$. We consider the point $(\bar{x}, \bar{y}, \bar{z}) = (1, 1, 0)$.

- **1** Prove that $(\bar{x}, \bar{y}, \bar{z})$ is feasible and satisfies the KKT conditions. Deduce that it is a global solution to the problem.
- 2 We allow now for an arbitrary value of γ . Find the set of values of γ for which $(\bar{x}, \bar{y}, \bar{z})$ still satisfies the KKT conditions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

We consider the following optimization problem:

$$\inf_{(x,y)\in\mathbb{R}^2} \exp\left(2x-2y^2\right)-2x+3y, \quad \text{subject to:} \quad \begin{cases} x+2y=3\\ x+y\geq 2\\ 2x+5y\leq 10. \end{cases}$$

Are the KKT conditions verified at the point (1,1)?

- Formulate the optimization problem for a very simple model of a microgrid.
- Microgrid: a set consisting of the following elements:

 a small-size electrical load (a building, a few houses)
 a source of renewable energy (solar panels, a wind turbine)
 a storage device (Energy Storage System, a battery)
 a macrogrid (an access to a large-scale energy network).

- Time scale: the decisions are taken every hour during the day.
- Optimization variables (at each time step) :
 - the amount of energy to be stored or withdrawn from the battery
 - the amount of energy **bought** or **sold** to the network.

Contraints:

- nonnegativity of variables
- evolution of the battery
- storage capacity of the battery.

Cost function:

- Cost of the energy bought on the network...
- minus the cost of the energy sold on the network.

Deterministic model

- Horizon: 24 hours, stepsize: 1 hour.
 Optimization over T = 24 intervals.
- Optimisation variable :
 - *a*(*s*): amount of electricity bought on the network (*s* = 1, ..., *T*).
 - v(s): amount of energy sold on the network (s = 1, ..., T).
- Parameters:
 - x(s) : state of charge of the battery at time s, s = 1, ..., T + 1
 - d(s): net demand of energy (load minus solar production) at time s, s = 1, ..., T.
 - $P_a(s)$: unitary buying price of energy at time s
 - P_v(s) : unitary selling price of energy at time s
 - *x*_{max}: storage capacity of the battery.

Deterministic model

Contraints:

•
$$x(s+1) = x(s) - d(s) + a(s) - v(s), \forall s = 1, ..., T$$

• $x(1) = 0$
• $a(s) \ge 0, \forall s = 1, ..., T$
• $v(s) \ge 0, \forall s = 1, ..., T$
• $0 \le x(s) \le x_{max}, \forall s = 1, ..., T + 1.$

• Cost function to be minimized:

$$J(x,a,v) = \sum_{s=1}^{T} \left(P_a(s)a(s) - P_v(s)v(s) \right).$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆