ENT 305A — AMPL Tutorial

Laurent Pfeiffer (Inria and CentraleSupélec, University Paris-Saclay)

1. GENERAL STRUCTURE OF THE CODE

The code is organized in three files, saved in the same
folder:

e the model file, where the optimization variables and
the parameters are declared, the cost function and
the constraints are programmed, and the optimiza-
tion variables are initialized;

e the parameter file, where the parameters are in-
stantiated;

e the instruction file.

Consider the following optimization problem:

inf) 2 +a(z +y) + 22
.y

s.t.: rry=">0
x>0,

where ¢ = —4 and b = 2. A model file could be as follows.

Declaration of optimization variables
var x;

var y;

Declaration of parameters

param a;

param b;

Cost function

minimize f: x72 + a*x(x+y) + 2%y~2;

Constraints

s.t. g: x+ty = b;

s.t. h: x >= 0;

Initialization of optimization variables
let x:= 1;

let y:= 2.5;

The corresponding parameter file can be written in this
way.

Instantiation of parameters variables
param a:= —-4;
param b:= 2;

Save the model file and the parameter file in two files
called modell.txt and paraml.txt.

The instruction file (call it scriptl.txt) can be as
follows:

reset;

model modell.txt;
data paraml.txt;
solve;

display x,y;
display f;
display g.dual;
display h.dual;

Finally, to solve to the problem, write include scriptl.txt

in the terminal.
Remarks.

e There is a semicolon ; at the end of each instruction.

e One has to give a name to the cost function (here, f)
and a name to each constraint (here, g and h).

e [t is not mandatory to initialize the optimization
variables, by default, the initial value is 0.

e Real-valued parameters can be declared and instan-
tiated directly in the model file, for example with
param a:=-4; in place of param a;.

e No algebraic operation can be done in the parameter
file, for example, y:= 1/3; is not understood in the
parameter file.

e Standard operations can be used with AMPL, for
example: exp(x), log(x), min(x,y), sqrt(x),...

e For the multiplication, the sign * cannot be omitted.

2. VECTORS AND MATRICES

The command var x; declares a real-valued optimization
variable called x. Write var x{1..10}; to declare an
optimization variable in R'?, with indices 1, 2,...,10. The
i-th coordinate of x can be called with x[i].

Consider for example the problem

inf A 4+ 2wy + 22 + 2x314 + 2.
. L2 3 4
(z2,23,24)ER3

The model file is as follows.

var x{2..4%};
minimize f: x[2]°4 + 2*xx[2] + x[3]"2
+ 2xx[3]*x[4] + x[4]1"2;

Similarly, matrix-valued optimization variables can be
used. For example, the command var x{1..3,0..5}; is
used to declare a optimization variable x with two indices
running from 1 to 3 and from 0 to 5. The coordinate
corresponding to the indices 2 and 4 can be called with
x[2,4].

Vector- and matrix-valued parameters are declared in the
same fashion, using the keyword param instead of var, in
the model file. Consider for example a parameter y defined
by:

y=(y(4),y(5),9(6)); y(4)=0, y(5) =1, y(6) =3.
It is declared in the model file with

param y{4..6};

It is instantiated in the parameter file with

param y:= 4
5
6

[V el

>

One writes alternatively the value of the index and the
corresponding value of the vector. Consider now a param-
eter y defined by

where the first index runs from 1 to 2 and the second one
from 0 to 2. It is declared in the model file with

param y{1..2,0..2};

and instantiated in the parameter file with

param y:=

N~ ONHO
~N O 01O O

1
1
1
2
2
2

Alternatively, y can be instantiated as follows:

param y: 0 1 2 :=
1456
2567;

3. OPERATIONS INVOLVING SETS
3.1 Constraints

Consider an optimization problem involving the following
constraints:

€ 207 xQZOa ngO

This can be programmed in the model file as follows:

s.t. g{j in 1..3}: x[j] >= 0;

3.2 Sums

Sums can be programmed with the keyword sum, followed
by an index set in brackets. Consider for example the
problem

8

inf (1:12 + 2xi) .
z€RS

i=1
The model file is:

var x{1..8%};
minimize f: sum{i in 1..8} (x[i]"2 + 2*x[i]);

Note that here the use of parentheses is mandatory.

3.3 Instantiating parameters

The parameter x = (1,2,3,4,5) can be declared and
instantiated with one command in the model file:

param x{i in 1..5} := i;

3.4 Initializing an optimization variable

For example:

let {i in 1..3} x[i]:= 2;

Remark. The syntax is the same for constraints parametrized

by two indices, for sums over a pair of indices in two sets,
for matrix-valued parameters and variables. Consider for
example:

param z{i in 1..5,j in 1..3} := i+ 2%j;

4. CALCULATED VARIABLES

Some optimization problems may involve variables which
can be written in function of some other variables (and/or
parameters) in an explicit fashion. They are called calcu-
lated variables. Consider for example:

inf 22+ >
(z,y)ER?
st.y=a+3;

The corresponding model file is

var x;

var y;

minimize f: x"2 + y~2;
s.t. g: y= x+3;

Here the variable y could be (mathematically) eliminated,
which would allow to simplify the resolution of the prob-
lem. This elimination can be realised with AMPL with
the following commands:

var X;
var y=x+3;
minimize f: x72 + y~2;

Sometimes, it is convenient to introduce calculated vari-
ables to improve the readability of the program without
slowing down the resolution of the problem. Consider the
optimization problem
al 2
inf a+br; —y;),
(a,b)E€R2 ; (i~ v)

where N € N, z € RV, and y € R" are parameters. The
model file can be written as follows:

param N;

param x{1..N};

param y{1..N};

var a;

var b;

minimize f: sum{i in 1..N} (a+b*x[i]-y[i])"2;

The optimization problem is equivalent to:

N
inf 22
(a,b)ER2, z€RN ; !
st zi=a+bx; —y;, Vi=1,...,N.

The variable z can be treated as a calculated variable:

param N;

param x{1..N};

param y{1..N};

var a;

var b;

var z{i in 1..N}= a + b*x[i]- y[i];
minimize f: sum{i in 1..N} (z[i]"2);

5. SYNTAXIC COMMENTS

The following symbols should not be mistaken:

The symbol : is used for the definition of the cost
function and the constraints.

The symbol = is used in equality constraints and
calculated variables.

The symbol := is used for instantiating parameters
or for initializing optimization variables.

The different delimiters play different roles:

The parentheses (and) are used to prioritize math-
ematical operations.

The brackets [and] are used to access to the
component of a vector or a matrix.

The curly brackets { and } are used whenever an
index set is involved (declaration of vectors and
parameters, sums, parametrized constraints).

6. DEBUGGING YOUR PROGRAM

Here is a list of common mistakes.

2
3
4

6

(
(
(
(
(5
(
(7
(

8

(9

)
|
)
)
)
)

)

1) The model and data files have not been saved before

loading the script file.
A model is loaded while the previous has not been
erased (with the reset command).
The character ; is missing at one or several places.
Some optimization variables and some parameters
have not been declared.
Some optimization variables have been declared
without the key word var.
Some parameters have been declared without the key
word param.
Some parameters have been instantiated without the
key word param.
A space has been introduced between : and =. One
should write := and not : = for the instantiation of
parameters.
For parameterized constraints, the index set must be
put before : as for example:
g {i in 1..n}: x[i] >= 0;
Misuse of parentheses. The following commands are
not understood by AMPL:
sum ({i in 1..n} x[i]);
g: (x >= 0);
The character *, necessary for multiplications, is
missing.
Use of a strict inequality constraint.
A vector-valued parameter (or optimization variable)
has been declared as real-valued.
Undefined parameters. AMPL does not understand:
param x{1..n};
param n;
The parameter n must be declared before x.

