Optimization Project in Energy ENT306

Elise Grosjean Ensta-Paris

Ensta-Paris Institut Polytechnique de Paris

KORK EXTERNE PROVIDE

Kロトメ部トメミトメミト ミニのQC

Indices

- \blacksquare Set of dams ${\cal I}$
- Set of rivers $\mathcal{E} \subset \mathcal{I} \times \mathcal{I}$: $(i, j) \in \mathcal{E} \Longleftrightarrow$ river flows from dam i to dam j. Set of time intervals: $\{1, ..., T\}$.

Optimization variables

- $q_{i,t}$: water level of dam i at the beginning of time interval $t \in \{1, ..., T + 1\}$
- $x_{i,t}$: amount of water exploited at dam i during time interval $t \in \{1, ..., T\}$
- $y_{(i,j),t}$: amount of water transported over the river $\left(i,j \right)$ during the time interval $t \in \{1, ..., T\}$
- $z_{i,t}$: amount of water exploited at dam *i* during the time int[e](#page-0-0)[r](#page-1-0)v[a](#page-0-0)l $t \in \{1, ..., T\}$ $t \in \{1, ..., T\}$ $t \in \{1, ..., T\}$, not transported [to](#page-1-0) [an](#page-3-0)[y](#page-1-0) [o](#page-2-0)[th](#page-3-0)er [d](#page-8-0)a[m](#page-1-0).

Parameters

- $P_{i,t}$: precipitation at *i*, during the time interval *t*
- Q_i : storage capacity of dam i
- K_i : initial level of dam *i*
- D_t : electricity demand during the time interval t

Functions

- $f_i \colon x \mapsto f_i(x)$: exploitation cost on a given time interval at dam i , as a function of the amount of exploited water x .
- $g_i\colon x\mapsto g_i(x)$: electricity production as a function of the amount of exploited water at dam i.

Cost function

$$
\min_{q,x,y,z} \sum_{t=1}^T \sum_{i \in I} f_i(x_{i,t}).
$$

Constraints

Nonnegativity of the variables:

$$
q_{i,t} \geq 0
$$
, $x_{i,t} \geq 0$, $y_{(i,j),t} \geq 0$, $z_{i,t} \geq 0$.

Bounds:

$$
q_{i,t} \leq Q_i, \quad \forall t \in \{1, ..., T+1\}.
$$

Initial condition:

$$
q_{1,i}=K_i.
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Demand satisfaction:

$$
\sum_{i\in\mathcal{I}}g_i(x_{i,t})=D_t,\quad\forall t\in\{1,...,T\}.
$$

Evolution of the water level in each dam:

$$
q_{i,t+1} = q_{i,t} + P_{i,t} - x_{i,t} + \sum_{\substack{j \in \mathcal{I} \\ (j,i) \in \mathcal{E}}} y_{(j,i),t}, \quad \forall t \in \{1, ..., T\}.
$$

Amount of exploited water:

$$
x_{i,t} = \sum_{\substack{j \in \mathcal{I} \\ (i,j) \in \mathcal{I}}} y_{(i,j),t} + z_{i,t}, \quad \forall t \in \{1, ..., T\}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Dynamic programming.

We parametrize the problem by

- \blacksquare the initial time interval t
- the initial level of water in every dam $\pmb{q} \in \mathbb{R}^{\mathcal{I}}.$

KORKARYKERKER POLO

Let $V(t, q)$ denote the corresponding optimal cost.

We have $V(T + 1, q) = 0$.

Dynamic programming principle

Let $t \in \{1, ..., T\}$ and let $q \in \prod_{i \in \mathcal{I}}[0, Q_i]$. Then

$$
V(t,q) = \inf_{\substack{q' \in \mathbb{R}^{\mathcal{I}}, \, x \in \mathbb{R}^{\mathcal{I}} \\ y \in \mathbb{R}^{\mathcal{E}}, \, z \in \mathbb{R}^{\mathcal{I}}}} \Big(\sum_{i \in \mathcal{I}} f_i(x_i) \Big) + V(t+1,q'), \qquad (DP(t,q))
$$

subject to:

- Non-negativity: $q'_i \ge 0$, $x_i \ge 0$, $y_{(i,j)} \ge 0$, $z_i \ge 0$.
- Bounds: $q'_i \leq Q_i$.
- Demand: $\sum_{i \in \mathcal{I}} g_i(x_i) = D_t$.
- Conservation: $q'_i = q_i + P_{i,t} x_i + \sum_j y_{(j,i)}.$ j∈I (j,i)∈E

■ Exploration :
$$
x_i = \sum_{\substack{j \in \mathcal{I} \\ (i,j) \in \mathcal{I}}} y_{(i,j)} + z_i.
$$

Remarks.

■ Why does it work?

 \rightarrow The level of water in the dams at time t is a sufficient information to take optimal decisions from t until the end of the optimization process.

 \rightarrow Knowing the level of water in the dams at time t, one can completely **forget** what happened in the past.

- **The dynamic programming principle characterizes** globally optimal solutions, even if the original problem is non convex.
- \blacksquare In the practical implementation of the method, one needs to discretize the variable q . The number of discretizetion points grows exponentially with the number of dams. This phenomenon is called curse of dimensionality.