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Introduction

⋄ Understand the purpose of reduced basis methods and how they work

⋄ Get a non-exhaustive overview of existing methods

⋄ Implement different methods to gain better insight

⋄ Understand the limitations and in some cases, how to overcome them



Introduction

Course objectives: Become familiar with reduced basis methods and implement it
(during TP sessions).

6 lectures/TP sessions on Tuesday afternoons

February 17: introduction + reduced basis approximation,
February 24: approximation space using POD, TP (start),
March 10: error estimation, TP (continuation),
March 17: approximation space using the Greedy algorithm, TP (continuation),
Deadline for TP 1 report (50% of the grade): Monday, March 24, 11:59 PM,
March 24: RB method for nonlinear PDEs, TP (start),
March 31: extensions / open topics, TP (continuation),
April 7: Oral presentations (50% of the grade).

TP sessions in Python, individually or in pairs, on

linear PDEs (TP ),
non-linear PDEs (TP ).



Introduction

linear second-order parameter dependent problem
{
−∇ ·

(
a(µ)∇u

)
= f dans Ω,

u = 0 sur ∂Ω.

u(x;µ) ∈ V : Unknowns,

µ ∈ G: Variable parameter,

f ∈ L2(Ω),
a : G × Ω → Md(R) is measurable, bounded, uniformly elliptic.
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⋄ Main goal
The objective of RBM is to find very quickly accurate approximations
of parameter-dependent functions of the generic form

u : Ω× G → R,

− Ω ∈ R
d : the spatial domain,

− G ⊂ R
Np : the parameter domain, with Np the number of parameters.

µ = (µ1, . . . , µNp) ∈ G : the varying parameter.

L(µ)(u(µ)) = F (µ), in Ω,

+ boundary conditions on ∂Ω.
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Usually, classical methods such as

⋄ Finite Difference Method (FDM)

⋄ Finite Volume schemes (FV)

⋄ Finite Element Method (FEM)

are used to provide an accurate approximation.
This consists in solving the problem in a subspace Vh ⊂ V , where h is the
mesh size.
Discrete approximations: uh ∈ Vh.
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Finite Difference Methods
Mostly based on Taylor expansions of (smooth) solutions.
Cartesian geometry only (at least without any additional tools).
“Replace” derivatives by differential quotients:

∂u

∂x
 

ui+1 − ui

∆x
,

∂2u

∂x2
 

ui+1 − 2ui + ui−1

∆x2
.

Finite Volume Methods
Based on the conservation form of the PDE
Integrate the balance equation on each cell κ and apply Stokes’ formula:

∫

κ

source =
∑

edges of κ

outward flux.

Approximate each flux and write the discrete balance equation obtained.

Finite Element Methods
Based on a variational formulation of the PDE.
Solve the formulation on a suitable finite-dimensional subspace of the energy space.
Piecewise polynomials: Finite Elements / Fourier-like basis: Spectral Methods



Introduction

Let’s get back to our sheep

linear second-order parameter dependent problem
{
−∇ ·

(
a(µ)∇u

)
= f (µ) dans Ω,

u = 0 sur ∂Ω.

u(x;µ) ∈ V : Unknowns,

µ ∈ G: Variable parameter,



Introduction
We know how to solve this PDE with arbitrary accuracy, for instance using Galerkin finite
elements.

Let {wi}1≤i≤N be a finite element approximation basis (Lagrange P1 hat functions). Then

uh =

N∑

i=1

uiwi

(where the ui are N real coefficients) defines a finite element approximation.

Finite element linear system (Galerkin approximation)

The vector
u = (u1, . . . , uN )T ∈ R

N

is the solution of a linear system
A(µ) u = f(µ),

where A(µ) ∈ R
N×N and f(µ) ∈ R

N .
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In practice: the finite element approximation basis {wi}1≤i≤N relies on

⋄ a mesh (partition of Ω into tetrahedra),

⋄ for Lagrange P1 finite elements, the number of degrees of freedom N equals the
number of vertices.

Convergence of the finite element method

Provided that “sufficiently uniform” meshes are used,

‖uh − u‖H1 = O(hs),

where h denotes the mesh size and s the order of convergence.

Arbitrary accuracy can be achieved. We speak of High Fidelity (HF) when the prescribed
accuracy is considered satisfactory. In general, N is large.



Reduced basis methods

Specific contexts: requiring the evaluation of the PDE solution for a
very large number of parameter values

parametric studies,
sensitivity analysis,
uncertainty quantification,
real-time simulations,
etc.

Despite the use of HPC, associated computational costs might be prohibitive,
especially for large-scale problems.



Reduced basis methods

How to reduce the

computational costs of

parameter-dependent problems?



Reduced Basis Methods (RBM)

PDE : µ → u(µ)

µ ∈ G : Parameter

u(µ) : Solution{
−∇ ·

(
a(µ)∇u

)
= f (µ) dans Ω,

u = 0 sur ∂Ω.



Reduced Basis Methods (RBM)

PDE : µ → u(µ)

µ ∈ G : Parameter

uh(µ; x) =
∑N

i=1 ui (µ)wi (x),



where u(µ) = (u1(µ), . . . , uN (µ))T ∈ R
N

is the solution of a linear system

A(µ)u(µ) = f(µ).



Reduced Basis Methods (RBM)

PDE : µ → u(µ)

µ ∈ G : Parameter

uh(µ; x) =
∑N

i=1 ui (µ)wi (x),



where u(µ) = (u1(µ), . . . , uN (µ))T ∈ R
N

is the solution of a linear system

A(µ)u(µ) = f(µ).

Aim of the reduced basis methods (RBM)

Solve the PDE as quickly as possible when it has to be

evaluated for many parameter values



Reduced Basis Methods (RBM)

PDE : µ → u(µ)

µ ∈ G : Parameter

uh(µ; x) =
∑N

i=1 ui (µ)wi (x),



where u(µ) = (u1(µ), . . . , uN (µ))T ∈ R
N

is the solution of a linear system

A(µ)u(µ) = f(µ).

Solution manifold

Solution manifold: M = {u(µ)| µ ∈ G}
HF solution manifold: Mh = {uh(µ)| µ ∈ G}
Does the manifold have a favorable mathe-
matical property that we could exploit?

Reduced space

V N Reduced space

b

b

b

b

b

uh(µ1)

uh(µ2)

uh(µN)Mh

Solution manifold
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Reduced Basis Methods (RBM)

PDE : µ → u(µ)

µ ∈ G : Parameter

u(µ) : Solution uh(µ; x) =
∑N

i=1 ui (µ)wi (x),

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where u(µ) = (u1(µ), . . . , uN (µ))T ∈ R
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Reduced Basis Methods (RBM)

Solution manifold

Solution manifold: M = {u(µ)| µ ∈ G}
HF solution manifold: Mh = {uh(µ)| µ ∈ G}

Reduced space

V N Reduced space

Projection on V N :

inf
vN∈V N

‖uh − vN‖Vh
.

We look for the reduced linear space that best fit the
solution manifold:

inf
V N⊂Vh

dim(VN )=N

sup
uh∈Mh

inf
vN∈V N

‖uh − vN‖Vh
. (M)

V
N

b

b b

b
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Solution manifold
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on V N
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Reduced Basis Methods (RBM)

Kolmogorov N-width:

dN(Mh,Vh) = inf
V N⊂Vh

dim(VN )=N

sup
uh∈Mh

inf
vN∈V N

‖uh − vN‖Vh
.

Favorable case:
The Kolmogorov N-width is “sufficiently small”, for
some N “not too large”. Typically, exponential decay

∃, τ,C > 0, ∀N > 1, dN(M,V ) ≤ Ce−τN .

Few a priori results (first result due to Maday, Patera,
and Turinici (2002))
Large number of a posteriori results, covering a wide
range of applications (elliptic, parabolic, and some—but
not all—hyperbolic equations).

V
N

b

b b

b

a

a

aa

a
b

b

Mh

uh(µ)

Solution manifold



Reduced Basis Methods

If we have N small enough, such that dN(Mh,Vh) = ε, and if we find the
minimizing space VN , then
∀µ ∈ G, ∃α(µ) = (α1(µ), . . . , αN(µ)) ∈ R

N such that

‖uh(µ)−
N∑

n=1

αn(µ)Φn‖V ≤ ε,

with {Φn}1≤n≤N a basis of V N , called the reduced basis.



Reduced Basis Methods

A reduced basis method is:

⋄ A reduced space spanned by a reduced basis: how to build the
infimum space V N (or to approach it)?

⋄ An approximation (in the reduced space): how to find the N

coefficients (α1(µ), . . . , αN(µ)) ∈ R
N such that

uN(µ) =
N∑

n=1

αn(µ)Φn

be the best approximation of u(µ) on V N?

uN(µ) ∈ V N is called the reduced basis approximation.



Reduced Basis Methods

A reduced basis method is:

⋄ A reduced space spanned by a reduced basis: how to build the
infimum space V N (or to approach it)?

⋄ An approximation (in the reduced space): how to find the N

coefficients (α1(µ), . . . , αN(µ)) ∈ R
N such that

uN(µ) =
N∑

n=1

αn(µ)Φn

be the best approximation of u(µ) on V N?

Remarks: The best coefficients are the projection coefficients of uh(µ):

αn(µ) = (uh(µ),Φn).

But of course, we don’t want to compute uh(µ) ...



Reduced basis methods

⋄ Galerkin-PODa

⋄ Petrov-Galerkin RBMb

⋄ EIMc

⋄ POD-DL-ROMd

⋄ 2-grid methode

⋄ POD-If (Reg, NN)

⋄ PBDWg

⋄ PGDh

⋄ Surrogate problemsi

⋄ Operator inferencej

. . .

aJ.L. Lumley. The structure of inhomogeneous turbulent flows. 1967
bK. Carlberg, M. Barone, H. Antil. Galerkin v. least-squares Petrov-Galerkin

projection in nonlinear model reduction. 2017
cM. Barrault, Y. Maday, NC. Nguyen, AT. PateraAn ’empirical

interpolation’method: application to efficient reduced-basis discretization of partial

differential equations.2004.
dS. Fresca, A. Manzoni POD-DL-ROM: Enhancing deep learning-based reduced

order models for nonlinear parametrized PDEs by pod.2022
eChakir, R. & Maday, Y. A two-grid finite-element/reduced basis scheme for the

approximation of the solution of parameter dependent PDE.2009
fD. Xiao, F. Fang, C. Pain, G. Hu. Non-intrusive reduced-order modelling of the

Navier–Stokes equations based on RBF interpolation. 2015.
gJ.K. Hammond, R. Chakir, F. Bourquin, Y. Maday. PBDW: A non-intrusive

Reduced Basis Data Assimilation method and its application to an urban dispersion
modeling framework.2019

hX. Zou, M. Conti, P. Diez and F. Auricchio A non-intrusive proper generalized

decomposition scheme with application in biomechanics.2017
iT. Guo, O. Rokoš, K. Veroy,Learning constitutive models from microstructural

simulations via a non-intrusive reduced basis method.2021
jP. Benner, P. Goyal, B. Kramer, B. Peherstorfer, K. Willcox, Operator inference

for non-intrusive model reduction of systems with non-polynomial nonlinear terms.
2021



Reduced basis methods: https://reducedbasis.github.io

⋄ Galerkin-PODa

⋄ Petrov-Galerkin RBMb

⋄ EIMc

⋄ POD-DL-ROMd

⋄ 2-grid methode

⋄ POD-If (Reg, NN)

⋄ PBDWg

⋄ PGDh

⋄ Surrogate problemsi

⋄ Operator inferencej

. . .

aJ.L. Lumley. The structure of inhomogeneous turbulent flows. 1967
bK. Carlberg, M. Barone, H. Antil. Galerkin v. least-squares Petrov-Galerkin

projection in nonlinear model reduction. 2017
cM. Barrault, Y. Maday, NC. Nguyen, AT. PateraAn ’empirical

interpolation’method: application to efficient reduced-basis discretization of partial

differential equations.2004.
dS. Fresca, A. Manzoni POD-DL-ROM: Enhancing deep learning-based reduced

order models for nonlinear parametrized PDEs by pod.2022
eChakir, R. & Maday, Y. A two-grid finite-element/reduced basis scheme for the

approximation of the solution of parameter dependent PDE.2009
fD. Xiao, F. Fang, C. Pain, G. Hu. Non-intrusive reduced-order modelling of the

Navier–Stokes equations based on RBF interpolation. 2015.
gJ.K. Hammond, R. Chakir, F. Bourquin, Y. Maday. PBDW: A non-intrusive

Reduced Basis Data Assimilation method and its application to an urban dispersion
modeling framework.2019

hX. Zou, M. Conti, P. Diez and F. Auricchio A non-intrusive proper generalized

decomposition scheme with application in biomechanics.2017
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Reduced Basis Methods

⋄ Offline Construction of a reduced space VN spanned by a reduced basis.

⋄ Online Computation of the reduced coefficients α.

The optimal reduced space V N may not be found
Two main algorithms to find approximated reduced spaces: the Proper
Orthogonal Decomposition (POD) or greedy algorithms.

In general, greedy algorithms are more efficient if they are combined with
aposteriori errors.
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Reduced Basis Methods

In both cases, the set of basis functions is de-
rived from HF solutions for several well chosen
parameter values, {uh(µ1), . . . , uh(µN)}, called
the snapshots.

V
N

uh(µ1)

uh(µ2)

uh(µN)
b

b b

b

a

a

aa

a
b

b

Mh

uh(µ)

Solution manifold
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Sum up

⋄ Resolution by a classical discretization method (FEM/FV . . . )
A system of size dependent of the number of degrees of freedom N needs
to be solved!
How to decrease the High-Fidelity (HF) code execution runtimes when we
need to solve the problem for many different parameter values?

ROM: Reduce the dimension of the algebraic system arizing from
the discretization of a PDE.

⋄ RBM: The solution is obtained with a projection of the HF problem onto
a reduced subspace.

⋄ How to obtain the reduced basis?
POD (TP1) /Greedy algorithms (TP2)

⋄ How to project the HF problem onto the reduced space?
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POD-Galerkin

Let’s get back to our sheep

linear second-order parameter dependent problem
{
−∇ ·

(
a(µ)∇u

)
= f (µ) dans Ω,

u = 0 sur ∂Ω.

u(x;µ) ∈ V : Unknowns,

µ ∈ G: Variable parameter,

Exercise

1. Write the weak formulation of the problem.

2. Prove that the problem is well-posed under some conditions.



POD-Galerkin

Context: VN ⊂ V is a subspace of dimension N .

Definition
The Galerkin reduced-basis approximation is the function uN(µ) ∈ VN

satisfying the weak form

∀vN ∈ VN , a (uN(µ), vN ;µ) = ℓ (vN ;µ) .

Exercise

Show that if a(·, ·;µ) : V ×V → R is coercive, then the Galerkin reduced-
basis approximation exists and is unique.



POD-Galerkin

Assume the weak formulation of the HF problem yields the discretized system

A(µ)u(µ) = l(µ)

then
a (uN(µ), vN ;µ) = ℓ (vN ;µ)

gives a new system to solved:

PTA(µ)P α(µ) = PT l(µ), (G-RB)

where P ∈ R
N×N .



POD-Galerkin

G-RB proof

FEM recall: Standard FEM Galerkin condition
The error eh is orthogonal to the test space Vh in the energy inner product induced by
a(·, ·) :

a(eh, vh) = a(u − uh, vh) = 0, ∀vh ∈ Vh.

Consider the weak residual r(vh) = ℓ(vh)− a(uh, vh). Then

r(vh) = a(u, vh)− a(uh, vh) = a(eh, vh) = 0, ∀vh ∈ Vh.

In other words, the residual vanishes on the test space.



POD-Galerkin

Let P = [Φ1, . . . ,ΦN ] ∈ R
N×N , i.e. Φj =

∑N
i=1 Pijwi and P = (Pij) ∈ R

N×N .

uN(µ) =
∑N

n=1 αn(µ)Φn = Pα(µ), α = α(µ) ∈ R
N , r(α) = l(µ)− A(µ)(Pα).

RB Galerkin condition
1. The residual is orthogonal to the test space VN : r(vN) = 0, ∀vN ∈ VN .

2. With HF basis {wi}Ni=1, we know that:

ℓ(vN) = vN
T l, a(uN , vN) = vN

TAuN, ∀vN ∈ VN ⊂ Vh,

with Aij = a(wj ,wi ), li = ℓ(wi )
So r(vN) = vN

T r. Thus, ∀vN ∈ VN , vN
T r(α) = 0.

3. But vN ∈ VN , so vN = Pβ with β ∈ R
N , and (Pβ)T (l(µ)− A(µ)(Pα(µ))) = 0.

True for all β ∈ R
N : PT (l(µ)− A(µ)Pα(µ)) = 0. Thus,

PTA(µ)P α(µ) = PT l(µ).
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Interpretation: With the standard RB Galerkin projection, we look for α that
minimizes the error in the energy norm.

uN = arg min
vN∈VN

‖u − vN‖a
Now, we get a system where the inversion cost is in O(N3) since dimensions :
PTA(µ)P ∈ R

N×N and PTb ∈ R
N !

Remarks

⋄ Other projections can be considered (e.g. Petrov-Galerkin projection
WTAPα = WT l with a test basis W 6= P).

⋄ In (G-RB), we first need to assemble A(µ) ∈ R
N×N .

Exercise

Consider the PDE model and derive an offline/online strategy to overcome the
complexity of the assembly process.



POD-Galerkin

Affine operator
definition
the bilinear for a(·, ·; µ) : V × V → R is affine if there exist

⋄ Qa functions θaq : G → R, 1 ≤ q ≤ Qa bounded (i.e. θaq(G)),
⋄ Qa functions aq : V × V → R, 1 ≤ q ≤ Qa

such that

∀µ ∈ G, ∀(u, v) ∈ V × V , a(u, v ; µ) =
Qa∑

q=1

θaq(µ)aq(u, v).

A(µ) =
∑Qa

q=1 θ
a
q(µ)Aq.



POD-Galerkin

And surprisingly for l ...
definition
the linear for l(·; µ) : V ′ is affine if there exist

⋄ Q l functions θal : G → R, 1 ≤ q ≤ Q l bounded (i.e. θlq(G)),
⋄ Q l functions lq : V ′, 1 ≤ q ≤ Q l

such that

∀µ ∈ G, ∀v ∈ V , a(v ; µ) =
Q l∑

q=1

θlq(µ)lq(v).

l(µ) =
∑Q l

q=1 θ
l
q(µ)lq.



POD-Galerkin

Assembling cost with the affine operators:
O(N2Qa + NQ l) with

PTA(µ)P =
Qa∑

q=1

θaq(µ) PTAqP︸ ︷︷ ︸
precomputed offline

, PT l(µ) =
Q l∑

q=1

θlq(µ) PT lq︸︷︷︸
precomputed offline

.



POD-Galerkin

Visit https://reducedbasis.github.io/docs/pod/ for the reduced basis
Galerkin approximation of the Navier-Stokes problem.



Sum up



Sum up

⋄ Resolution by a classical discretization method (FEM/FV . . . )

A system of size dependent of the number of degrees of freedom N needs to be solved!

How to decrease the High-Fidelity (HF) code execution runtimes when we need to solve the

problem for many different parameter values?

ROM: Reduce the dimension of the algebraic system arizing from the
discretization of a PDE.

⋄ RBM: The solution is obtained with a projection of the HF problem onto a reduced
subspace.

⋄ How to obtain the reduced basis?
POD (TP1) /Greedy algorithms (TP2)

⋄ How to project the HF problem onto the reduced space?
Galerkin projections
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POD

Chapter 2
POD + TP FV



POD: Continuous version

We want to approximate u(x,µ) by
∑N

k=1 ak(µ)Φk(x).

Let us consider µ a random variable and u centered (Eµ[u] = 0).
POD = PCA: We want to find the axes that best represent the data!

bc b

b

b

b

b

b

b

b

b

b

b

b
b

b
b

Φ1

Φ2

u

min
‖Φi‖=1

E[‖u −
N∑

k=1

ak(µ) Φk‖2].



POD: Continuous version

bc b

b

b

b

b

b

b

b

b

b

b

b
b

b
b

Φ1

Φ2

bcP1u

Snapshot projection over Φ1: (u,Φ1)Φ1



POD: Continuous version

How do we find the reduced basis?

bc b

b

b

b

b

b

b

b

b

b

b

b
b

b
b

Φ1

Φ2

bcP1u

Var(a1)

Var(a1) = E[a21]− (E[a1])
2 = E[a21]

a1 = (u,Φ1), ‖Φ1‖ = 1.

min
‖Φ1‖=1

E[‖u − (u,Φ1)Φ1‖2] or max
‖Φ1‖=1

E[|(u,Φ1)|2].
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POD: Continuous version

We want to approximate u(x,µ) by
∑N

k=1 ak(µ)Φk(x),
with Φk ∈ L2(Ω) + orthonormality

∫
ΩΦi(x)Φj(x) dx = δij .

We look for Φi , i = 1, . . . ,N that maximize the average projection:

max
‖Φi‖=1

E[|(u,Φi)|2].

With Φ1 ∈ V where V is a real Hilbert space, one can show that this
maximization problem is equivalent to a spectral problem

CΦ1 = λ1Φ1

(assuming that the dominated convergence theorem can be applied).



POD: Continuous version

Proof
Lagrangian: J [Φ1] = E[|(u,Φ1)|2]− λ(‖Φ1‖2 − 1).
Directional derivative (with a small variation Ψ):
J [Φ + δΨ] = E[|(u,Φ + δΨ)|2]− λ(‖Φ + δΨ‖2 − 1).
d
dδ
J [Φ + δΨ]|δ=0 = 0.

⋄ (u,Φ + δΨ) = (u,Φ) + δ(u,Ψ),
so (u,Φ + δΨ)2 = (u,Φ)2 + 2δ(u,Φ)(u,Ψ) + O(δ2)
and with average:
E[(u,Φ + δΨ)2] = E[(u,Φ)2] + 2δE[(u,Φ)(u,Ψ)] + O(δ2)

So
d

dδ
E[(u,Φ + δΨ)2]|δ=0 = 2E[(u,Φ)(u,Ψ)]

⋄ (Φ + δΨ,Φ + δΨ) = (Φ,Φ) + 2δ(Φ,Ψ) + O(δ2), so

d

dδ
(Φ + δΨ,Φ + δΨ)|δ=0 = 2(Φ,Ψ).
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Proof
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POD: Continuous version

Proof
Altogether, we obtain:

E[(u,Φ)(u,Ψ)]− λ(Φ,Ψ) = 0

Let C be such that (CΦ,Ψ) = E[(u,Φ)(u,Ψ)]. Then

(CΦ,Ψ) = λ(Φ,Ψ), ∀Ψ.

Since true for all Ψ, we obtain:

E[(u,Φ)u] = λΦ, i. e. CΦ = λΦ .

We can prove that C is a positive linear compact self-adjoint operator: the
problem is well-posed.
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We can prove that C is a positive linear compact self-adjoint operator: the
problem is well-posed.



Snapshots POD

Spectral theorem (Compact Self-Adjoint Operator)
Let V be a separable Hilbert space and let C : V → V be a compact, positive, self-adjoint
operator. Then there exists an orthonormal basis {Φn}n∈N of V and a sequence of real
numbers (λn)n∈N ≥ 0 such that, for all n ∈ N,

CΦn = λnΦn.

Moreover, limn→∞ λn = 0.

Proof

• Assume that there exists λn such that limn→∞ λn 6= 0.
Then there exists ε > 0 such that |λnk | ≥ ε.
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Spectral theorem (Compact Self-Adjoint Operator)
Let V be a separable Hilbert space and let C : V → V be a compact, positive, self-adjoint
operator. Then there exists an orthonormal basis {Φn}n∈N of V and a sequence of real
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Proof

• Assume that there exists λn such that limn→∞ λn 6= 0.
Then there exists ε > 0 such that |λnk | ≥ ε.

• Let Φnk be the corresponding orthonormal eigenvectors: CΦnk = λnkΦnk .

Φnk bounded: ‖Φnk‖ = 1
C compact ⇒ (CΦnk ) admit a convergent subsequence



Snapshots POD
Spectral theorem (Compact Self-Adjoint Operator)
Let V be a separable Hilbert space and let C : V → V be a compact, positive, self-adjoint
operator. Then there exists an orthonormal basis {Φn}n∈N of V and a sequence of real
numbers (λn)n∈N ≥ 0 such that, for all n ∈ N,

CΦn = λnΦn.

Moreover, limn→∞ λn = 0.

Proof

• Assume that there exists λn such that limn→∞ λn 6= 0.
Then there exists ε > 0 such that |λnk | ≥ ε.

• Let Φnk be the corresponding orthonormal eigenvectors: CΦnk = λnkΦnk .

Φnk bounded: ‖Φnk‖ = 1
C compact ⇒ (CΦnk ) admit a convergent subsequence

• (Φn) orthonormal ⇒ ‖Φn − Φm‖ =
√
2 for n 6= m.

For the subsequence: ‖CΦnk ′k
− CΦmk

′

k
‖ = ‖λnk ′k

Φnk ′k
− λmk

′

k
Φmk

′

k
‖ 9 0 if |λnk | ≥ ε.

This contradicts the compactness of C .



Snapshot POD

Spectral theorem (Compact Self-Adjoint Operator)
Let V be a separable Hilbert space and let C : V → V be a compact, positive,
self-adjoint operator. Then there exists an orthonormal basis {Φn}n∈N of V
and a sequence of real positive numbers (λn)n∈N such that, for all n ∈ N,

CΦn = λnΦn.

Moreover, limn→∞ λn = 0.

E[(u,Φ)u] = λΦ, i. e. CΦ = λΦ .

One can prove that C is a positive linear compact self-adjoint operator: one
unique solution equal to the largest eigenvalue of the problem!
(CΦ,Φ) = E[|(u,Φ)|2] = λ
max

‖Φ1‖=1
E[|(u,Φ1)|2] = λ1



POD energy error

λ1 >= λ2 >= ... >= 0

E[‖u − PNu‖2] =
∑

k>N

E[a2k ] =
∑

k>N

λk

Proof:
Since {Φk} is an orthonormal basis of V , u(µ) =

∑∞
k=1 ak(µ)Φk .

E[‖u − PNu‖2] = E[‖
∞∑

k=N

akΦk‖2] =
∑

k>N

E[a2k ] =
∑

k>N

λk

In fact, one can show that the more regularizing the operator C is, the faster
its eigenvalues decay!



Link between regularity and eigenvalues
One can show that the more regularizing the operator C is, the faster its eigenvalues decay!

Exercise
Let A : L2(0, 1) → L2(0, 1) be defined by (Ax)(t) =

∫ t

0
x(s) ds.

1. Determine the adjoint operator A∗.

2. Define C = A∗A. Show that C is a compact, positive, and self-adjoint operator on
L2(0, 1).

3. Let σ denote a singular value of A, and let x 6= 0 satisfy Cx = A∗Ax = σ2x .

(a) Show that A∗Ax is twice differentiable and compute (A∗Ax)′′(t).

(b) Deduce that x satisfies the differential equation x(t) + σ2x ′′(t) = 0.

4. Using the appropriate boundary conditions, determine the general form of the
eigenfunctions x(t).

5. Deduce the explicit expression of the singular values σn of A and determine their
asymptotic behaviour as n → ∞.



Link between regularity and eigenvalues

One can show that the more regularizing the operator C is, the faster its eigenvalues decay!

Exercise: Transport equation

Let Th : L2(0, 1) → L2(0, 1) be the transport operator defined by (Thx)(t) = x(t − h), with
periodic boundary conditions on (0, 1) and a fixed shift h ∈ (0, 1).

1. Show that Th is a bounded linear operator on L2(0, 1) and that ‖Thx‖L2 = ‖x‖L2 .

2. Compute the adjoint Th and show that T ∗
h = T−h.

3. Show that T ∗
h Th = I , where I is the identity operator.

4. Deduce that the singular values of Th satisfy σn = 1 for all n.
5. Conclude that Th is not compact and does not regularize.



Link between regularity and eigenvalues

Thus σ = 1 No decrease! No efficient basis functions for transport and
advection-dominated regime

No regularity gain

No compacity

No decrease in POD eigenvalues

No efficient basis functions

What can we do in that case?

shifted POD

transport maps

nonlinear reduced bases

POD + autoencoders
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Link between regularity and eigenvalues
Thus σ = 1 No decrease!

No regularity gain

No compacity

No decrease in POD eigenvalues

No efficient basis functions

What can we do in that case?

Transport:





shifted POD: u(x , t) =
∑

k

∑

n

ak,n(t)Φk,n(x− sk(t))

transport maps: u(x , t) =
∑

n

an(t)Φn(Tt(x))

Nonlinear dynamics:

{
nonlinear reduced bases: =F(u) ↔ ȧ = Aa+ H(a ⊗ a)

POD+autoencoders 1(t,µ) → NN → a(t, µ) → u ≃ Va

1POD DL ROM: https://reducedbasis.github.io/docs/poddlrom/



Sheep model

Let’s get back to our sheep

linear second-order parameter dependent problem
{
−∇ ·

(
a(µ)∇u

)
= f (µ) dans Ω,

u = 0 sur ∂Ω.

u(x;µ) ∈ V : Unknowns,

µ ∈ G: Variable parameter,

How do we construct the reduced basis with the POD in practice?



Snapshot POD

E[(u,Φ)u] = λΦ, i. e. CΦ = λΦ .

⇔
∫
Ω R(x, x′) Φ(x′)dx′ = λΦ(x), with R(x, x′) = E[u(x)u(x′)], which is the

spatial continuous covariance operator.



Snapshot POD
The space of the modes is contained into the snapshots’ span.

R(x, x′) = E[u(x)u(x′)] ≃ 1

Ntrain

Nt rain∑

k=1

u(x,µk)u(x
′,µk).

so

∫

Ω

R(x, x′) Φ(x′)dx′ ≃ 1

Ntrain

Ntrain∑

k=1

u(x,µk)

∫

Ω

u(x′,µk)Φ(x
′)dx′

︸ ︷︷ ︸
ak=(u(µk ),Φ)

= λΦ(x), (R)

Therefore Φ(x) =

Ntrain∑

k=1

αku(x,µk).

ak = (u(µk),Φ) = (u(µk),
∑Ntrain

j=1 αju(µj)) =
∑Ntrain

j=1 αj (u(µk), u(µj))︸ ︷︷ ︸
Ck,j

(R) ⇔ 1

Ntrain

Ntrain∑

k=1

u(x,µk)

Ntrain∑

j=1

αjCk,j = λ

Ntrain∑

k=1

αku(x,µk).
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Snaphot POD

(R) ⇔ 1

Ntrain

Ntrain∑

k=1

u(x,µk)

Ntrain∑

j=1

αjCk,j = λ

N∑

k=1

αku(x,µk)

gives for one k = i

1

Ntrain

Ntrain∑

j=1

Ci ,jαj = λαi .

Thus, Cα = Ntrainλα = λ′α: the eigenvalues of the spatial covariance operator
or the snapshot correlation matrix are the same (up to a factor Ntrain)!



Discretization

Cα = λ′α (C)

We impose (αn) orthonormal.
Let S = [u1, . . . , uNtrain

] ∈ R
N×Ntrain . Then Φ = Sα, and

‖Φ‖2 = (Sα, Sα) = αTSTSα
But (C ) implies that ‖Φ‖2 = λ′αTα = λ′

Hence Φ̃(x) =
1√
λ′

Ntrain∑

k=1

αku(x,µk) ( after normalization)

Let us denote in the following slides Φ = Φ̃ and λ = λ′.



Discretization: Snapshot POD algorithm

1: Collect snapshots u(·, µi ), i = 1, . . . ,Ntrain

2: Assemble snapshot matrix S

3: Compute correlation matrix C = STS or C = STMS (M= mass matrix)

4: Solve Cαi = λiαi , i = 1, . . . ,Ntrain

5: Sort the eigenvalues

6: Retrieve first N eigenvalues/eigenvectors

7: Build POD modes Φi =
1

√

λi
Sαi , i = 1, . . . ,N

The space of the modes is contained into the snapshots’ span: N ≤ Ntrain

How do we choose N? λ1 >= λ2 >= ... >= 0

E[‖u − PNu‖2] =
∑

k>N

E[a2k ] =
∑

k>N

λk

Relativ Information Content (RIC) must be close to 0:

1−∑N
k=1 λk/

∑Ntrainλk

k=1



TP: VF5-TPFA

Notations

Mesh (T ) size: h

Sets of edges: F ,Fext ,Fint ,FK

Normals: nK ,nKσ,nKL

Volumes / Measures/Distances: |K |, |σ|, dKσ, dLσ, dKL

Finite Volume Methods

Based on the conservation form of the PDE

Integrate the balance equation on each cell κ and apply Stokes’ formula:

∑

edges of κ

outward flux =

∫

κ

source.

Approximate each flux and write the discrete balance equation obtained.
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TP: VF5-TPFA
Notations

Mesh (T ) size: h

Sets of edges: F ,Fext ,Fint ,FK

Normals: nK ,nKσ,nKL

Volumes / Measures/Distances: |K |, |σ|, dKσ, dLσ, dKL

Finite Volume Methods

Based on the conservation form of the PDE → Flux: total outward flux = the total
internal source

Integrate the equation on each cell κ and apply Stokes’ formula:

∫

K

f (x) d(x) = −
∫

K

∇ ·
(
a(µ)∇u

)
=

∑

σ∈FK

−
∫

σ

a(µ)∇u(x) · nK ,σ dγ(x)

︸ ︷︷ ︸
FK,σ

Approximate each flux and write the discrete balance equation obtained.



TP: VF5-TPFA

Notations

Mesh (T ) size: h

Sets of edges: F ,Fext ,Fint ,FK

Normals: nK ,nKσ,nKL

Volumes / Measures/Distances: |K |, |σ|, dKσ, dLσ, dKL

Flux balance: ∑

σ∈FK

FK ,σ =

∫

K

f (x) d(x).

Flux conservativity:
FK ,σ + F L,σ = 0 if σ = K |L.

We want to find uh = (uK )K∈T ∈ R
T

Define uh → FK ,σ(uh) that approximates the flux and find uh ∈ R
T such that

|K |fK =
∑

σ∈FK

FK ,σ∀K ∈ T .
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TP: VF5-TPFA
We want to find uh = (uK )K∈T ∈ R

T

Define uh → FK ,σ(uh) that approximates the flux and find u ∈ R
T such that

|K |fK =
∑

σ∈FK

FK ,σ, ∀K ∈ T

.
Case of an interior edge σ ∈ Eint , σ = K |L

xL − xK = dKL nKL.

If x ∈ σ,

(∇u(x)) · nKL =
u(xL)− u(xK )

dKL
+O(h).

=⇒ FK ,σ = −A(µ)|σ|u(xL)− u(xK )

dKL︸ ︷︷ ︸
FK,σ(uh)

+O(h2)

where A is the harmonic average: A = A(xL)A(xK )dKL
A(xL)dK,σ+A(xK )dL,σ



TP: VF5-TPFA

We want to find uh = (uK )K∈T ∈ R
T

Define uh → FK ,σ(uh) that approximates the flux and find u ∈ R
T such that

|K |fK =
∑

σ∈FK

FK ,σ, ∀K ∈ T

.
Case of a boundary edge σ ∈ Eext

xσ − xK = dKσ nKσ.

(∇u(x)) · nKσ ≈ u(xσ)− u(xK )

dKσ

=
0− u(xK )

dKσ

(boundary condition)

=⇒ FK ,σ = −|σ|AK
−u(xK )

dKσ︸ ︷︷ ︸
FK,σ(uh)

+O(h2)



TP: TPFA (Two-Point Flux Approximation)

Find uh = (uK )K∈Th
such that for all K in Th:

∑

σ∈FK∩Fint

τσ(uK − uL) +
∑

σ∈FK∩Fext

τσuK =

∫

K

f (x)dx

with Dirichlet boundary u = 0 on ∂Ω, where τσ = |σ| AK AL

AL dK ,σ+AK dL,σ
on Fint

and τσ = |σ| AK

dK ,σ
on Fext

We take here Ω = [0, 1]× [0, 1] with a cartesian mesh.
A(x , y ;µ) = 2µ1 + µ2 sin(x + y) cos(xy)
f (x , y ;µ) = µ3(1− y) + µ4x (1− x)



TP: VF5-TPFA

POD-based Reduced Order Model with TPFA
⋄ Complete the function assemble tpfa. The TPFA solver must return the cell centers, the matrix

M, and the vector b such that Mu = b.

⋄ Generate a training dataset:

Use Ntrain = 10 snapshots and sample random parameters µ with components in [0, 1].

Solve the full-order TPFA system for each sampled parameter.

Store the resulting solutions as a snapshots list.

⋄ Using the discrete L2 inner product (u, v)L2 =
∑

K |K | uKvK ,

Assemble the snapshot correlation matrix.

Compute the reduced basis with a Proper Orthogonal Decomposition (POD).

Verify that the reduced basis is orthonormal with respect to (·, ·)L2 .

⋄ Determine how many modes N are sufficient using the Relative Information Content.

⋄ Write a function that computes the ROM projection coefficients of a given full-order solution u.

⋄ Consider a new parameter µ. Write a function that computes the reduced-order approximation of

the solution without computing the HF solution.

⋄ Show that the obtained reduced system has the form M̃a = b̃, where M̃ is of size N × N and b̃ is

of size N.



TP: VF5-TPFA

POD-based Reduced Order Model with TPFA
⋄ Test the reduced model for µ = (0.6, 0.5, 0.2, 0.8).

⋄ Compare the errors ‖uref − u‖L2 and ‖uref − uN‖L2 , where uref is a refined solution.



TP
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