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Introduction

¢ Understand the purpose of reduced basis methods and how they work
¢ Get a non-exhaustive overview of existing methods
¢ Implement different methods to gain better insight

¢ Understand the limitations and in some cases, how to overcome them



Introduction

Course objectives: Become familiar with reduced basis methods and implement it
(during TP sessions).

6 lectures/ TP sessions on Tuesday afternoons

February 17: introduction + reduced basis approximation,

February 24: approximation space using POD, TP (start),

March 10: error estimation, TP (continuation),

March 17: approximation space using the Greedy algorithm, TP (continuation),
Deadline for TP 1 report (50% of the grade): Monday, March 24, 11:59 PM,
March 24: RB method for nonlinear PDEs, TP (start),

March 31: extensions / open topics, TP (continuation),

April 7: Oral presentations (50% of the grade).

TP sessions in Python, individually or in pairs, on

linear PDEs (TP ),
non-linear PDEs (TP ).



Introduction

linear second-order parameter dependent problem

—V - (a(p)Vu) =f dans Q,
u=20 sur 0f).

u(x; ) € V 1 Unknowns,
[t € G: Variable parameter,
fel?(Q),
a:G xQ— My(R) is measurable, bounded, uniformly elliptic.



Introduction

< Main goal
The objective of RBM is to find very quickly accurate approximations
of parameter-dependent functions of the generic form

u:Qxg—R,

— Qe R the spatial domain,
— G C RMe: the parameter domain, with N, the number of parameters.
p=(p1,...,pn,) €G : the varying parameter.

L(p)(u(p)) = F(p), in £,
+ boundary conditions on 0f2.



Introduction

Usually, classical methods such as
o Finite Difference Method (FDM)
o Finite Volume schemes (FV)
o Finite Element Method (FEM)

are used to provide an accurate approximation.

This consists in solving the problem in a subspace Vj, C V/, where h is the
mesh size.

Discrete approximations: uj, € V.




Introduction

Finite Difference Methods
Mostly based on Taylor expansions of (smooth) solutions.
Cartesian geometry only (at least without any additional tools).
“Replace” derivatives by differential quotients:
ou Uiyl — Uj H%u Uir1 — 2u; 4+ uj—q
_— A —, _
Ox Ax Ox? Ax? '
Finite Volume Methods
Based on the conservation form of the PDE
Integrate the balance equation on each cell x and apply Stokes’ formula:

/source = Z outward flux.
K

edges of Kk

Approximate each flux and write the discrete balance equation obtained.
Finite Element Methods
Based on a variational formulation of the PDE.
Solve the formulation on a suitable finite-dimensional subspace of the energy space.
Piecewise polynomials: Finite Elements / Fourier-like basis: Spectral Methods



Introduction

Let's get back to our sheep

linear second-order parameter dependent problem

—V - (a(p)Vu) = f(pu) dans Q,
u=20 sur 02.

u(x; ) € V : Unknowns,
p € G: Variable parameter,



Introduction

We know how to solve this PDE with arbitrary accuracy, for instance using Galerkin finite
elements.

Let {w;}1<i<ps be a finite element approximation basis (Lagrange P! hat functions). Then
N

Up = g uiwi

i=1

(where the u; are \V real coefficients) defines a finite element approximation.

Finite element linear system (Galerkin approximation)

The vector
u=(up,...,un)" eRV

is the solution of a linear system
A(p) u = f(p),

where A(p) € RV>N and f(u) € RV,



Introduction

In practice: the finite element approximation basis {w;}1<i<x~ relies on
© a mesh (partition of Q into tetrahedra),

o for Lagrange P! finite elements, the number of degrees of freedom N equals the
number of vertices.

Convergence of the finite element method

Provided that “sufficiently uniform” meshes are used,
|up — ullm = O(h°),

where h denotes the mesh size and s the order of convergence.

Arbitrary accuracy can be achieved. We speak of High Fidelity (HF) when the prescribed
accuracy is considered satisfactory. In general, A is large.



Reduced basis methods

Specific contexts: requiring the evaluation of the PDE solution for a
very large number of parameter values

parametric studies,

sensitivity analysis,

uncertainty quantification,

real-time simulations,

etc.

Despite the use of HPC, associated computational costs might be prohibitive,
especially for large-scale problems.



Reduced basis methods

How to reduce the
computational costs of
parameter-dependent problems?




Reduced Basis Methods (RBM)

PDE : p — u(p)
u € G : Parameter
u(p) : Solution

—V - (a(u)Vu) = f(p) dans Q,
u=20 sur 02.



Reduced Basis Methods (RBM)

PDE : p — u(p)
u € G : Parameter

up(pi x) = SN, ui(p)wi(x),

where u(p) = (u1(p), ..., up(p))” € RV
is the solution of a linear system

A(p)u(p) = f(p).



Reduced Basis Methods (RBM)

PDE : p — u(p)
u € G : Parameter

up(pi x) = SN, ui(p)wi(x),

where u(p) = (u(pe), . .., up ()7 € RV
is the solution of a linear system

A(pn)u(p) = f(p).

Aim of the reduced basis methods (RBM)

Solve the PDE as quickly as possible when it has to be
evaluated for many parameter values



Reduced Basis Methods (RBM)

PDE : pp — u(p)

pn € G : Parameter

un(pi; %) = 5% () wi(x),

where u(p) = (u1(p), ..., upn(p))” € RV
is the solution of a linear system

A(p)u(p) = F(p).
Solution manifold
Solution manifold: M = {u(p)| p € G}
HF solution manifold: My = {us(p)| p € G}

Does the manifold have a favorable mathe-
matical property that we could exploit?

Solution manifold



Reduced Basis Methods (RBM)

PDE : pp — u(p)
pn € G : Parameter

un(ps; ) = S22y ui (i) wi(x), . M,
where u(p) = (u1(p), ..., upn(p))” € RV

is the solution of a linear system / \ / 7
A(p)u(p) = F(p). ~ >~ O

Solution manifold

Solution manifold
Solution manifold: M = {u(p)| p € G}
HF solution manifold: My = {us(p)| p € G}

Does the manifold have a favorable mathe-
matical property that we could exploit?

Reduced space
VN Reduced space



Reduced Basis Methods (RBM)

PDE : pp — u(p)
pn € G : Parameter

un(p; x) = S, ui(p)wi(x),

where u(p) = (u1(p), ..., upn(p))” € RV e

is the solution of a linear system / \ ~—=—@ { 7
A(p)u(p) = (). Ty

Solution manlfold

Solution manifold
Solution manifold: M = {u(p)| p € G}
HF solution manifold: My = {us(p)| p € G}

Does the manifold have a favorable mathe-
matical property that we could exploit?

Reduced space
VN Reduced space



Reduced Basis Methods (RBM)

PDE : pp — u(p)

pn € G : Parameter

u(pe) = Solution up(p; x) = Z{il ui(p)wi(x),
where u(p) = (u1(p), ..., un(p))” € RV
is the solution of a linear system

A(p)u(p) = F(p).
Solution manifold

Solution manifold: M = {u(p)| p € G}
HF solution manifold: My = {us(p)| p € G}

Solution manifold

Does the manifold have a favorable mathe-
matical property that we could exploit?

Reduced space
VN Reduced space



Reduced Basis Methods (RBM)

Solution manifold

Solution manifold: M = {u(u)| p € G}
HF solution manifold: My = {un(p)| p € G}

)
Reduced space Projection
on VN

VN Reduced space

— N.
Projection on V™: Solution manifold

inf |lup — vnllv, -
vweVvN




Reduced Basis Methods (RBM)

Solution manifold

Solution manifold: M = {u(u)| p € G}
HF solution manifold: My = {un(p)| p € G}

)
Reduced space Projection
on VN

VN Reduced space

— N.
Projection on V™: Solution manifold

inf |lup — vnllv, -
vweVvN

We look for the reduced linear space that best fit the
solution manifold:

inf  su inf [Jup—v ) M
VNCV, Uhe./l:\ilh VNEV’VH h NHVh ( )
dim(VN)=n




Reduced Basis Methods (RBM)

Kolmogorov N-width:

dy(Mp, V) = inf sup inf |lup — vallv,.
VNCV, upEMy weVvN
dim(VN)=n

Favorable case:
The Kolmogorov N-width is “sufficiently small”, for
some N “not too large”. Typically, exponential decay

Solution manifold
3,7,C>0, YN>1, dy(M,V)< Ce ™V,

Few a priori results (first result due to Maday, Patera,
and Turinici (2002))

Large number of a posteriori results, covering a wide
range of applications (elliptic, parabolic, and some—but
not all—hyperbolic equations).



Reduced Basis Methods

If we have N small enough, such that dy(Mp, V) = ¢, and if we find the
minimizing space V), then
Vu € G, Ja(p) = (ar(p), ..., an(pw)) € RN such that

[[un(pe) — Zan )®nllv <,

with {®,}1<,<n a basis of V¥, called the reduced basis.



Reduced Basis Methods

A reduced basis method is:

< A reduced space spanned by a reduced basis: how to build the
infimum space V'V (or to approach it)?

o An approximation (in the reduced space): how to find the N
coefficients (aq (), ..., an(p)) € RN such that

un(p) = ) an(p)®n

be the best approximation of u(u) on VN?

un(pe) € VNV is called the reduced basis approximation.



Reduced Basis Methods

A reduced basis method is:

<o A reduced space spanned by a reduced basis: how to build the
infimum space V'V (or to approach it)?

© An approximation (in the reduced space): how to find the N
coefficients (a1 (), ..., an(p)) € RN such that

un(p) = an(p)®,

be the best approximation of u(u) on VN7

Remarks: The best coefficients are the projection coefficients of u,(p):

an(p) = (un(p), Pn).

But of course, we don't want to compute up(pt) ...



Reduced basis methods
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Petrov-Galerkin RBM?
EIM©

POD-DL-ROM?
2-grid method®
POD-If (Reg, NN)
PBDW#

PGD"

Surrogate problems’

Operator  inference/

@J.L. Lumley. The structure of inhomogeneous turbulent flows. 1967

bk, Carlberg, M. Barone, H. Antil. Galerkin v. least-squares Petrov-Galerkin
projection in nonlinear model reduction. 2017

€M. Barrault, Y. Maday, NC. Nguyen, AT. PateraAn ‘empirical
interpolation’method: application to efficient reduced-basis discretization of partial
differential equations.2004.

9S. Fresca, A. Manzoni POD-DL-ROM: Enhancing deep learning-based reduced
order models for nonlinear parametrized PDEs by pod.2022

€Chakir, R. & Maday, Y. A two-grid finite-element/reduced basis scheme for the
approximation of the solution of parameter dependent PDE.2009

D. Xiao, F. Fang, C. Pain, G. Hu. Non-intrusive reduced-order modelling of the
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&J.K. Hammond, R. Chakir, F. Bourquin, Y. Maday. PBDW: A non-intrusive
Reduced Basis Data Assimilation method and its application to an urban dispersion
modeling framework.2019

hx. Zou, M. Conti, P. Diez and F. Auricchio A non-intrusive proper generalized
decomposition scheme with application in biomechanics.2017

T, Guo, O. Rokos, K. Veroy,Learning constitutive models from microstructural
simulations via a non-intrusive reduced basis method.2021

Jp. Benner, P. Goyal, B. Kramer, B. Peherstorfer, K. Willcox, Operator inference

for non-intrusive model reduction of systems with non-polynomial nonlinear terms.
2021



Reduced basis methods: https://reducedbasis.github.io
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2021



Reduced Basis Methods

o Offline Construction of a reduced space V) spanned by a reduced basis.

¢ Online Computation of the reduced coefficients a.



Reduced Basis Methods

o Offline Construction of a reduced space V) spanned by a reduced basis.
¢ Online Computation of the reduced coefficients a.

The optimal reduced space V¥ may not be found
Two main algorithms to find approximated reduced spaces: the Proper
Orthogonal Decomposition (POD) or greedy algorithms.

In general, greedy algorithms are more efficient if they are combined with
aposteriori errors.



Reduced Basis Methods

In both cases, the set of basis functions is de-
rived from HF solutions for several well chosen
parameter values, {u(py), ..., up(pey)}, called |
the snapshots. )

Solution manifold






¢ Resolution by a classical discretization method (FEM/FV ...)
A system of size dependent of the number of degrees of freedom N needs
to be solved!
How to decrease the High-Fidelity (HF) code execution runtimes when we
need to solve the problem for many different parameter values?



¢ Resolution by a classical discretization method (FEM/FV ...)
A system of size dependent of the number of degrees of freedom N needs
to be solved!
How to decrease the High-Fidelity (HF) code execution runtimes when we
need to solve the problem for many different parameter values?

ROM: Reduce the dimension of the algebraic system arizing from
the discretization of a PDE.

¢ RBM: The solution is obtained with a projection of the HF problem onto
a reduced subspace.

¢ How to obtain the reduced basis?
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¢ Resolution by a classical discretization method (FEM/FV ...)
A system of size dependent of the number of degrees of freedom N needs
to be solved!
How to decrease the High-Fidelity (HF) code execution runtimes when we
need to solve the problem for many different parameter values?

ROM: Reduce the dimension of the algebraic system arizing from
the discretization of a PDE.

¢ RBM: The solution is obtained with a projection of the HF problem onto
a reduced subspace.
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POD-Galerkin

Let's get back to our sheep

o g AR
. AW
linear second-order parameter dependent problem

—V - (a(p)Vu) = f(p) dans Q,
u=20 sur 0S).

u(x; p) € V : Unknowns,
p € G: Variable parameter,

Exercise

1. Write the weak formulation of the problem.
2. Prove that the problem is well-posed under some conditions.



POD-Galerkin

Context: Vy C V is a subspace of dimension N.

Definition
The Galerkin reduced-basis approximation is the function uy(p) € Vi
satisfying the weak form

Vvw € Vv, a(un(p), vivi ) = £ (vivi ) -

Exercise

Show that if a(+,-; ) : V x V — R is coercive, then the Galerkin reduced-
basis approximation exists and is unique.



POD-Galerkin

Assume the weak formulation of the HF problem yields the discretized system

A(p)u(p) = ()

then
a(un(p), v; p) = £ (v; p)

gives a new system to solved:

PTA(u)P ap) = PTI(p), (G-RB)

where P € RVXN,



POD-Galerkin

G-RB proof
FEM recall: Standard FEM Galerkin condition

The error ey, is orthogonal to the test space V/}, in the energy inner product induced by

a(-,-):

‘a(eh, Vh) = a(u — Up, Vh) =0, Vv, € Vh.‘

Consider the weak residual r(vy) = ¢(vy) — a(up, vi). Then
r(vh) = a(u, Vh) = a(uh, Vh) = a(eh, Vh) =0, Vv, € V.

In other words, the residual vanishes on the test space.



POD-Galerkin

Let P =[®,..., 0y € RV ie. &, =YV Pyw; and P = (P;) € RV,
un(p) = SN an(p)d, = Pa(p), a=a(p) €RV, r(a) =I(p) — A(p)(Pa).



POD-Galerkin

Let P = [y,...,dp] € RVN e ;=M Pyw; and P = (Pj) € RV,
un(p) = SN an(p)d, = Pa(p), a=a(p) €RV, r(a) =I(p) — A(p)(Pa).

RB Galerkin condition

1. The residual is orthogonal to the test space Viy : r(vy) =0, Yvy € Vi.




POD-Galerkin
Let P = [y,...,dp] € RVN e ;=M Pyw; and P = (Pj) € RV,
un(p) = Xpiy an(1)®n = Pa(p), @ = a(p) €RY, r(a) = (1) — A(u)(Pa).

RB Galerkin condition

1. The residual is orthogonal to the test space Viy : r(vy) =0, Yvy € V.
2. With HF basis {w;}Y,, we know that:

f(VN) = VN T|, a(uN, VN) = VN TAuN, VVN € VN C Vh,

with A,J = a(wj, W,'), l; = K(W,')
So r(vy) =vn'r. Thus, Vvy € Vi, vn'r(a) = 0.



POD-Galerkin
Let P = [y,...,dp] € RVN e ;=M Pyw; and P = (Pj) € RV,
un(p) = Xpiy an(1)®n = Pa(p), @ = a(p) €RY, r(a) = (1) — A(u)(Pa).

RB Galerkin condition

1. The residual is orthogonal to the test space Viy : r(vy) =0, Yvy € V.
2. With HF basis {w;}Y,, we know that:

f(VN) = VN T|, a(uN, VN) = VN TAuN, VVN € VN C Vh,

with A,J = a(wj, W,'), l; = K(W,')

So r(vy) =vn'r. Thus, Vvy € Vi, vn'r(a) = 0.

3. But vy € Vy, so vy = P3 with 3 € RN, and (PB)"(I(n) — A(ue)(Pex(e))) = 0.
True for all B € RY: PT(I(u) — A(p)Pax(pe)) = 0. Thus,

PTA(L)P a(p) = PTI(u).



POD-Galerkin

Interpretation: With the standard RB Galerkin projection, we look for a that
minimizes the error in the energy norm.

uy = arg vanei\r/lNHu — vn||a

Now, we get a system where the inversion cost is in O(N?) since dimensions :
PTA(u)P € RV*N and PTh € RV

Remarks
o Other projections can be considered (e.g. Petrov-Galerkin projection
WTAPa = W'l with a test basis W # P).
o In (G-RB), we first need to assemble A(u) € RV

Exercise

Consider the PDE model and derive an offline/online strategy to overcome the
complexity of the assembly process.



POD-Galerkin

Affine operator

definition

the bilinear for a(-,-; p): V x V — R is affine if there exist
o Q7 functions 03 : G — R, 1 < g < Q? bounded (i.e. 95(7)),
o Qafunctlonsaq VxV-oR 1<qg<@?

such that

Yu e g, Y(u,v) e Vx V a(u,v;, p)= Zea(uaq(uv)

A(k) = Comr 05(1)A,



POD-Galerkin

And surprisingly for | ...

definition

the linear for /(-; w) : V' is affine if there exist
o Q' functions 67 : G - R, 1< g < Q' bounded (i.e. 8,(G)),
o Q' functions ly: V', 1<qg< Q'

such that

Q/
VeG. VeV a(v; p)=> 0L(1)lg(v).
g=1

(1) = S5, 6L (1)l



POD-Galerkin

Assembling cost with the affine operators:
O(N?2Q? + NQ') with

Q? Q'
PTA(p)P =) #2 PTAP , PTI(u)=) ¢ PTI
(») q; 2(n) q (©) ; (1) q

precomputed offline precomputed offline



POD-Galerkin

Visit https://reducedbasis.github.io/docs/pod/ for the reduced basis
Galerkin approximation of the Navier-Stokes problem.






© Resolution by a classical discretization method (FEM/FV ...)
A system of size dependent of the number of degrees of freedom A needs to be solved!
How to decrease the High-Fidelity (HF) code execution runtimes when we need to solve the
problem for many different parameter values?
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© Resolution by a classical discretization method (FEM/FV ...)
A system of size dependent of the number of degrees of freedom A needs to be solved!
How to decrease the High-Fidelity (HF) code execution runtimes when we need to solve the
problem for many different parameter values?

ROM: Reduce the dimension of the algebraic system arizing from the
discretization of a PDE.

o RBM: The solution is obtained with a projection of the HF problem onto a reduced
subspace.

o How to obtain the reduced basis?
POD (TP1) /Greedy algorithms (TP2)

o How to project the HF problem onto the reduced space?
Galerkin projections



Chapter 2
POD + TP FV



POD: Continuous version

We want to approximate u(x, tt) by S"h_, ax(pt)®x(x).

Let us consider i a random variable and u centered (E,[u] = 0).
POD = PCA: We want to find the axes that best represent the data!

N
Hg}ﬁﬂl Efflu — Z a(p) Oul?].
e k=1




POD: Continuous version

Snapshot projection over ®1: (u, ®1)d;



POD: Continuous version

How do we find the reduced basis? Var(on)

Var(a;) = E[a?] — (E[a1])? = E[a2]

a = (u,®1), [|®1]| = 1.



POD: Continuous version

How do we find the reduced basis? Var(on)

Var(a;) = E[a?] — (E[a1])? = E[a2]

a = (u,®1), [|®1]| = 1.

min Ef|u— (0.90)9 ] or max E[[(u, 1))




POD: Continuous version
We want to approximate u(x, ) by ZLVZI ar(p) Pk (x),
with &, € L2(Q) + orthonormality [, ;(x)®;(x) dx = d;.

We look for ®;, i =1,..., N that maximize the average projection:

max E[|(u, ®;)|?].
max E[|(u, )

|
With ®; € V where V is a real Hilbert space, one can show that this
maximization problem is equivalent to a spectral problem

CPy = \1Py

(assuming that the dominated convergence theorem can be applied).



POD: Continuous version

Proof

Lagrangian: J[®1] = E[|(u, ®1)[?] — A(||P1]|? — 1).
Directional derivative (with a small variation W):

J[® + V] = E[|(u, ® + W) 2] = A(||® + V|| — 1).
L[S + §W]j5—0 = 0.



POD: Continuous version

Proof
Lagrangian: J[®1] = E[|(u, ®1)2] — M\(J|®1]|? - 1).
Directional derivative (with a small variation W):
J[® + V] = E[|(u, ® + W) 2] = A(||® + V|| — 1).
L[S + §W]j5—0 = 0.
o (u,®+0V) = (u,®) + d(u, V),
so (u,® + V)2 = (u, ®)? +26(u, d)(u, V) + O(5?)
and with average:
E[(u, ® 4 0V)?] = E[(u, )] + 20E[(u, )(u, V)] + O(4?)

So J;E[(u, ® + 0W)?) 520 = 2E[(u, D) (u, V)]

o (O + 6V, D + §V) = (&, d) + 25(d, V) + O(6?), so
%(CD + 0V, & + 0V) 50 = 2(P, V).




POD: Continuous version

Proof
Altogether, we obtain:

E[(u, ®)(u, V)] — A(®, V) =0




POD: Continuous version

Proof
Altogether, we obtain:

E[(u, ®)(u, V)] — A(®, V) =0

Let C be such that (C®, V) = E[(u, ®)(u, V)]. Then
(CO, V) = AP, V), VV.

Since true for all ¥, we obtain:

E[(u,®)u] = AP, i. e. CP =)D |




POD: Continuous version

Proof
Altogether, we obtain:

E[(u, ®)(u, V)] — A(®, V) =0

Let C be such that (C®, V) = E[(u, ®)(u, V)]. Then
(CO, V) = AP, V), VV.

Since true for all ¥, we obtain:

E[(u,®)u] = AP, i. e. CP =)D |

We can prove that C is a positive linear compact self-adjoint operator: the
problem is well-posed.



Snapshots POD

Spectral theorem (Compact Self-Adjoint Operator)

Let V be a separable Hilbert space and let C : V — V be a compact, positive, self-adjoint
operator. Then there exists an orthonormal basis {®,},cn of V and a sequence of real
numbers (Ap)nen > 0 such that, for all n € N,

Cod, =\, 0.
Moreover, lim,_ o A, = 0.

Proof

e Assume that there exists A, such that lim,_., A\, # 0.
Then there exists € > 0 such that |\, | > ¢.



Snapshots POD

Spectral theorem (Compact Self-Adjoint Operator)

Let V be a separable Hilbert space and let C : V — V be a compact, positive, self-adjoint
operator. Then there exists an orthonormal basis {®,},cn of V and a sequence of real
numbers (Ap)nen > 0 such that, for all n € N,

Co, = \,9,.
Moreover, lim, o A, = 0.
Proof

e Assume that there exists A, such that lim,_,., A\, # 0.
Then there exists ¢ > 0 such that |\, | > e.

o Let ¢, be the corresponding orthonormal eigenvectors: C®, = A, P, .
&, bounded: ||®, | =1

C compact = (C®,,) admit a convergent subsequence



Snapshots POD

Spectral theorem (Compact Self-Adjoint Operator)

Let V be a separable Hilbert space and let C : V — V be a compact, positive, self-adjoint
operator. Then there exists an orthonormal basis {®,},cn of V and a sequence of real
numbers (Ap)nen > 0 such that, for all n € N,

Co, = \,0,.
Moreover, lim,_ o A, = 0.

Proof

e Assume that there exists A, such that lim,_ . A\, # 0.
Then there exists € > 0 such that |\, | > ¢.
o Let &, be the corresponding orthonormal eigenvectors: C®,, = A, ®p,.
&, bounded: |, | =1
C compact = (C®,,) admit a convergent subsequence
e (®,) orthonormal = ||®, — &, || =2 for n# m.
For the subsequence: [|[C®,:1 — COp || = [[ Xy Pryt = Ay P | = 0 if [Ny | > €.
This contradicts the compactness of C.



Snapshot POD

Spectral theorem (Compact Self-Adjoint Operator)

Let V be a separable Hilbert space and let C : V — V be a compact, positive,
self-adjoint operator. Then there exists an orthonormal basis {®,},cn of V
and a sequence of real positive numbers (\,)qen such that, for all n € N,

CP, = Ay®,.

Moreover, lim,_oc A, = 0.

E[(u,®)ul = AP, i. e. CO =)D |

One can prove that C is a positive linear compact self-adjoint operator: one
unique solution equal to the largest eigenvalue of the problem!
(Co, @) =E[|(u, ®)]*] = A

max E[|(u, ®1)?] = A
max Bl (. 2] = Xy



POD energy error

A >= A >=..>=0

Elllv— PuulP) = S E[2] = 3 A

k>N k>N

Proof:
Since {®} is an orthonormal basis of V, u(p) = > 7 ; ar(p) Pk

Efllu — Pyull®] = E[HZ ad?] = E[a] =)

k>N k>N

In fact, one can show that the more regularizing the operator C is, the faster
its eigenvalues decay!



Link between regularity and eigenvalues

One can show that the more regularizing the operator C is, the faster its eigenvalues decay!

Exercise
Let A: [2(0,1) — L2(0,1) be defined by (Ax)(t) = [; x(s) ds.
1. Determine the adjoint operator A*.

2. Define C = A*A. Show that C is a compact, positive, and self-adjoint operator on
L2(0,1).

3. Let o denote a singular value of A, and let x # 0 satisfy Cx = A*Ax = o?x.

(a) Show that A*Ax is twice differentiable and compute (A*Ax)"(t).

(b) Deduce that x satisfies the differential equation x(t) + o>x”(t) = 0.

4. Using the appropriate boundary conditions, determine the general form of the
eigenfunctions x(t).

5. Deduce the explicit expression of the singular values o, of A and determine their
asymptotic behaviour as n — oco.



Link between regularity and eigenvalues

One can show that the more regularizing the operator C is, the faster its eigenvalues decay!

Exercise: Transport equation

Let T, : L2(0,1) — L2(0,1) be the transport operator defined by ( T;x)(t) = x(t — h), with
periodic boundary conditions on (0,1) and a fixed shift h € (0,1).

1. Show that T} is a bounded linear operator on L2(0,1) and that || Tpx||2 = ||Ix| 2
2. Compute the adjoint Tj and show that T, = T_.

3. Show that T; T, = I, where [ is the identity operator.

4. Deduce that the singular values of T satisfy o, =1 for all n.

5. Conclude that T} is not compact and does not regularize.



Link between regularity and eigenvalues

Thus 0 = 1 No decrease! No efficient basis functions for transport and
advection-dominated regime

No regularity gain
No compacity
No decrease in POD eigenvalues

No efficient basis functions
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Thus 0 = 1 No decrease! No efficient basis functions for transport and
advection-dominated regime

No regularity gain

No compacity

No decrease in POD eigenvalues
No efficient basis functions

What can we do in that case?



Link between regularity and eigenvalues

Thus 0 = 1 No decrease! No efficient basis functions for transport and
advection-dominated regime

No regularity gain

No compacity

No decrease in POD eigenvalues

No efficient basis functions
What can we do in that case?

shifted POD

transport maps

nonlinear reduced bases

POD + autoencoders



Link between regularity and eigenvalues

Thus 0 = 1 No decrease!
No regularity gain
No compacity
No decrease in POD eigenvalues
No efficient basis functions
What can we do in that case?

shifted POD: u(x, t) = Y Y an(t)Phn(x — si(t))
k n
Transport:
transport maps: u(x,t) = Z an(t)P,(Te(x))

. . nonlinear reduced bases: =F(u) <» 4 = Aa+ H(a ® a)
Nonlinear dynamics: 1
POD+autoencoders ~(t,u) — NN — a(t, ) — u~ Va

1pOD_DL_ROM: https://reducedbasis.github.io/docs/poddlrom/



Sheep model

Let's get back to our sheep

linear second-order parameter dependent problem

—V - (a(p)Vu) = f(pn) dans Q,
u=20 sur 092.

u(x; u) € V : Unknowns,
p € G: Variable parameter,
How do we construct the reduced basis with the POD in practice?



Snapshot POD

E[(u,®)ul = AP, i. e. CO =)D |

& [q R(x,X') &(x)dx" = Ad(x), with R(x,x") = E[u(x)u(x')], which is the
spatial continuous covariance operator.



Snapshot POD

The space of the modes is contained into the snapshots’ span.

1 N;rain /
R(x ) = Blu(x)u()] = 17— 3 (i )u(x i)
train k:].
1 Nirain
o[ Roxx) (x)ax' = = ulxy) [l o) =20 (R)
Q train k=1 Q

ar=(u(p),®)

Nirain
Therefore ®(x) = Z au(X, ().
k=1




Snapshot POD

The space of the modes is contained into the snapshots’ span.

N;rain
ROxx') = BLu()u(x)] = 7 > (s, i Julx's 1)
ramn k=1
1 Ntrain
0 / R(x,x") ®(x")dx" ~ N Z u(x,uk)/ u(X', g ) (X )dx" = Ad(x), (R)
Q train | 4 Q
ar=(u(p),®)
Nirain
Therefore ®(x Z (X, py).

Ntan Nta
a = (u(pi), @) = (u(p) 225277 egulpy)) = 225277 g (u(pe)s u(py))
—_————
Cr.j
Ntra/n Ntram Ntram

(R) & g > ulxm)> aiCi =33 vl su)

k=1 j=1




Snaphot POD

Ntra/n Ntram

Z u(x, Nk)z ajCyj = AZaku(x i)

k=1

1
R
( )<:> Ntrain

gives for one k = |

C,"J'Oéj = )\Oé,'.

Thus, Ca = Nyainda = N a: the eigenvalues of the spatial covariance operator
or the snapshot correlation matrix are the same (up to a factor Ny.in)!



Ca=\Na
We impose («,) orthonormal.
Let S = [u1,...,un,, | € RV*Nwin. Then & = Sa, and
|®]]? = (Sa, Sa) =a’STSa
But (C) implies that |[®||2 = NaTa = X
1 Ntraln

Hence ®(x) = \/_ Z aku(x, py) ( after normalization)

Let us denote in the following slides ¢ = ® and X = \.



Discretization: Snapshot POD algorithm

1: Collect snapshots u(-, iti), i =1,..., Neain

2: Assemble snapshot matrix S

3. Compute correlation matrix C = S7S or C = STMS (M= mass matrix)
4: Solve CO(,' = )\,'Oc;, i = 1, oy Ntra,',,

5: Sort the eigenvalues

6: Retrieve first N eigenvalues/eigenvectors

7: Build POD modes ®; = ﬁsa,, i=1,...,N

The space of the modes is contained into the snapshots’ span: N < Ny.in

How do we choose N7 Ay >= X\, >= ... >=0
Efllu— Pyull’] =D Ela] = > A
k>N k>N

Relativ Information Content (RIC) must be close to 0:

ZLV 1 )\k/ ZNtraln)\k



TP: VF5-TPFA

Notations
Mesh (7)) size: h
Sets of edges: F, Fext, Fint, FK
Normals: ng,nkq, Nk
Volumes / Measures/Distances: |K]|,|o|, dko dio, dkL

Finite Volume Methods
Based on the conservation form of the PDE

Integrate the balance equation on each cell k and apply Stokes’ formula:

Z outward flux = /source.
K

edges of K

Approximate each flux and write the discrete balance equation obtained.



TP: VF5-TPFA

Notations
Mesh (7) size: h
Sets of edges: F, Fext, Fint, FK
Normals: ng,nkq, Nk

Volumes / Measures/Distances: |K]|,|o|, dko, dio, dri

Finite Volume Methods

Based on the conservation form of the PDE — Flux: total outward flux = the total
internal source

Integrate the balance equation on each cell k and apply Stokes’ formula:

Z outward flux = /source.

edges of K r

Approximate each flux and write the discrete balance equation obtained.



TP: VF5-TPFA

Notations
Mesh (7)) size: h
Sets of edges: F, Fext, Fint, FK
Normals: ng,nk,,nkL
Volumes / Measures/Distances: |K]|,|o|, dko, dio, dkL

Finite Volume Methods
Based on the conservation form of the PDE — Flux: total outward flux = the total
internal source
Integrate the equation on each cell x and apply Stokes’ formula:

/f(x) d(x) = /V (a(p)Vu) Z /a(u)Vu(x) Nk,o dy(x)

oc€Fk

Fk,o

Approximate each flux and write the discrete balance equation obtained.



TP: VF5-TPFA

Notations
Mesh (7)) size: h
Sets of edges: F, Fext, Fints FK
Normals: ng,nkq, nkL

Volumes / Measures/Distances: |K]|,|o|, dks, dio, dri

Flux balance:

> Fro = [ 70 d(x).

oc€FK

Flux conservativity: - -
Fko+Fro=0if o = K|L.

We want to find up = (uk)ker € R7
Define up — Fk »(un) that approximates the flux and find uj, € R7 such that
|K|fK = Z FK,GVK eT.

oceFk



TP: VF5-TPFA

We want to find up = (uk)ker € RT
Define up — Fk »(up) that approximates the flux and find u € R7 such that

Klfic = Y Fkoy VKET

oceFk



TP: VF5-TPFA

We want to find up = (uk)ker € R7
Define up, — Fk »(up) that approximates the flux and find u € R7 such that

Klfic = Y Fko, VKET
oceFk

Case of an interior edge 0 € Eint, 0 =KJL

XL — Xk = dkL NKL.
If x € o,
u(x) — u(xx)

+O(h).
e (h)

(Vu(x)) -ng =

Ao |M +O(R?)

- fK,a =

Fk.,o(un)

A(XL)A(XK)dKL
A()(L)d;(,(,-|—A(XK)dLCr

where A is the harmonic average: A =



TP: VF5-TPFA

We want to find up = (uk)ker € R7

Define up — Fk »(up) that approximates the flux and find u € R7 such that
Klfic = Y Fkoy VKET
ocEFk

Case of a boundary edge 0 € Eext

Xo — XK = dKO‘ NKo-

(Vu(x)) - nko = u(xs) —u(xkx) 0 — u(xx)

dn = e (boundary condition)
= —u(xk) 2
— Fro = lolac =5 10(r?)
Ko

—_———

FK,u(Uh)



Find up, = (uk)ker, such that for all K in Tj:

Z To(uk — ug) + Z TUUK:/ f(x)dx

o€FkNFin: o€ FkNFext K

with Dirichlet boundary u = 0 on 9Q, where 7, = |0|% on Fi;

and 7, = Ial(ﬁ(—Ka on Fe
We take here Q = [0, 1] x [0, 1] with a cartesian mesh.

A(x,y; ) = 2p1 + po sin(x + y) cos(xy)
fx,yi 1) = p3(l — y) + pax (1 = x)



TP: VF5-TPFA
POD-based Reduced Order Model with TPFA

o Complete the function assemble_tpfa. The TPFA solver must return the cell centers, the matrix
M, and the vector b such that Mu = b.

¢ Generate a training dataset:

Use Niain = 10 snapshots and sample random parameters g with components in [0, 1].
Solve the full-order TPFA system for each sampled parameter.
Store the resulting solutions as a snapshots list.

o Using the discrete L2 inner product (u, v);2 = >, |K| uk vk,

Assemble the snapshot correlation matrix.
Compute the reduced basis with a Proper Orthogonal Decomposition (POD).
Verify that the reduced basis is orthonormal with respect to (-, -) ;2.

¢ Determine how many modes N are sufficient using the Relative Information Content.
¢ Write a function that computes the ROM projection coefficients of a given full-order solution u.

¢ Consider a new parameter p. Write a function that computes the reduced-order approximation of
the solution without computing the HF solution.

¢ Show that the obtained reduced system has the form Ma = b, where M is of size N x N and b is
of size N.



TP: VF5-TPFA

POD-based Reduced Order Model with TPFA

¢ Test the reduced model for u = (0.6,0.5,0.2,0.8).

o Compare the errors ||urer — ul[;2  and  ||urer — un||12, Where uper is a refined solution.



Unit square with Nx=5, Ny=2 (dx=0.2, dy=0.5)
1 0CeII-center indexing: (i,j)
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