

Reduced basis methods for the resolution of parameter-dependent PDEs

MS13

Elise Grosjean
Ensta-Paris

Ensta-Paris
Institut Polytechnique de Paris

1 Introduction

2 POD-Galerkin

Introduction

- ◊ Understand the purpose of reduced basis methods and how they work
- ◊ Get a non-exhaustive overview of existing methods
- ◊ Implement different methods to gain better insight
- ◊ Understand the limitations and in some cases, how to overcome them

Introduction

Course objectives: Become familiar with reduced basis methods and implement it (during TP sessions).

6 lectures/TP sessions on Tuesday afternoons

February 17: introduction + reduced basis approximation,

February 24: approximation space using POD, TP (start),

March 10: error estimation, TP (continuation),

March 17: approximation space using the Greedy algorithm, TP (continuation),

Deadline for TP 1 report (50% of the grade): Monday, March 24, 11:59 PM,

March 24: RB method for nonlinear PDEs, TP (start),

March 31: extensions / open topics, TP (continuation),

April 7: Oral presentations (50% of the grade).

TP sessions in Python, individually or in pairs, on

linear PDEs (TP),

non-linear PDEs (TP).

Introduction

linear second-order parameter dependent problem

$$\begin{cases} -\nabla \cdot (a(\mu) \nabla u) = f & \text{dans } \Omega, \\ u = 0 & \text{sur } \partial\Omega. \end{cases}$$

$u(\mathbf{x}; \mu) \in V$: Unknowns,

$\mu \in \mathcal{G}$: Variable parameter,

$f \in L^2(\Omega)$,

$a : \mathcal{G} \times \Omega \rightarrow \mathcal{M}_d(\mathbb{R})$ is measurable, bounded, uniformly elliptic.

Introduction

◇ Main goal

The objective of RBM is to find **very quickly accurate approximations** of parameter-dependent functions of the generic form

$$u : \Omega \times \mathcal{G} \rightarrow \mathbb{R},$$

- $\Omega \in \mathbb{R}^d$: the spatial domain,
- $\mathcal{G} \subset \mathbb{R}^{N_p}$: the parameter domain, with N_p the number of parameters.
 $\mu = (\mu_1, \dots, \mu_{N_p}) \in \mathcal{G}$: the varying parameter.

$$\begin{aligned} \mathcal{L}(\mu)(u(\mu)) &= F(\mu), \text{ in } \Omega, \\ &+ \text{ boundary conditions on } \partial\Omega. \end{aligned}$$

Introduction

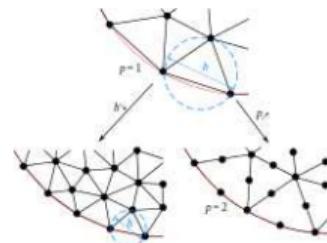
Usually, classical methods such as

- ◊ Finite Difference Method (FDM)
- ◊ Finite Volume schemes (FV)
- ◊ Finite Element Method (FEM)

are used to provide an accurate approximation.

This consists in solving the problem in a subspace $V_h \subset V$, where h is the mesh size.

Discrete approximations: $u_h \in V_h$.



Introduction

Finite Difference Methods

Mostly based on Taylor expansions of (smooth) solutions.

Cartesian geometry only (at least without any additional tools).

“Replace” derivatives by differential quotients:

$$\frac{\partial u}{\partial x} \rightsquigarrow \frac{u_{i+1} - u_i}{\Delta x}, \quad \frac{\partial^2 u}{\partial x^2} \rightsquigarrow \frac{u_{i+1} - 2u_i + u_{i-1}}{\Delta x^2}.$$

Finite Volume Methods

Based on the conservation form of the PDE

Integrate the balance equation on each cell κ and apply Stokes' formula:

$$\int_{\kappa} \text{source} = \sum_{\text{edges of } \kappa} \text{outward flux.}$$

Approximate each flux and write the discrete balance equation obtained.

Finite Element Methods

Based on a variational formulation of the PDE.

Solve the formulation on a suitable finite-dimensional subspace of the energy space.

Piecewise polynomials: **Finite Elements** / Fourier-like basis: **Spectral Methods**

Introduction

Let's get back to our sheep

linear second-order parameter dependent problem

$$\begin{cases} -\nabla \cdot (a(\mu) \nabla u) = f(\mu) & \text{dans } \Omega, \\ u = 0 & \text{sur } \partial\Omega. \end{cases}$$

$u(\mathbf{x}; \mu) \in V$: Unknowns,

$\mu \in \mathcal{G}$: Variable parameter,

Introduction

We know how to solve this PDE with arbitrary accuracy, for instance using **Galerkin finite elements**.

Let $\{w_i\}_{1 \leq i \leq \mathcal{N}}$ be a finite element approximation basis (Lagrange P^1 hat functions). Then

$$u_h = \sum_{i=1}^{\mathcal{N}} u_i w_i$$

(where the u_i are \mathcal{N} real coefficients) defines a finite element approximation.

Finite element linear system (Galerkin approximation)

The vector

$$\mathbf{u} = (u_1, \dots, u_{\mathcal{N}})^T \in \mathbb{R}^{\mathcal{N}}$$

is the solution of a linear system

$$\mathbf{A}(\mu) \mathbf{u} = \mathbf{f}(\mu),$$

where $\mathbf{A}(\mu) \in \mathbb{R}^{\mathcal{N} \times \mathcal{N}}$ and $\mathbf{f}(\mu) \in \mathbb{R}^{\mathcal{N}}$.

Introduction

In practice: the finite element approximation basis $\{w_i\}_{1 \leq i \leq \mathcal{N}}$ relies on

- ◊ a mesh (partition of Ω into tetrahedra),
- ◊ for Lagrange P^1 finite elements, the number of degrees of freedom \mathcal{N} equals the number of vertices.

Convergence of the finite element method

Provided that “*sufficiently uniform*” meshes are used,

$$\|u_h - u\|_{H^1} = \mathcal{O}(h^s),$$

where h denotes the mesh size and s the order of convergence.

Arbitrary accuracy can be achieved. We speak of **High Fidelity (HF)** when the prescribed accuracy is considered satisfactory. In general, \mathcal{N} is large.

Reduced basis methods

Specific contexts: requiring the evaluation of the PDE solution for a *very large number of parameter values*

- parametric studies,
- sensitivity analysis,
- uncertainty quantification,
- real-time simulations,
- etc.

Despite the use of HPC, associated computational costs might be prohibitive, especially for large-scale problems.

How to reduce the
computational costs of
parameter-dependent problems?

Reduced Basis Methods (RBM)

PDE : $\mu \rightarrow u(\mu)$

$\mu \in \mathcal{G}$: Parameter

$u(\mu)$: Solution

$$\begin{cases} -\nabla \cdot (a(\mu) \nabla u) = f(\mu) & \text{dans } \Omega, \\ u = 0 & \text{sur } \partial\Omega. \end{cases}$$

Reduced Basis Methods (RBM)

$$PDE : \mu \rightarrow u(\mu)$$

$\mu \in \mathcal{G}$: Parameter

$$u_h(\mu; \mathbf{x}) = \sum_{i=1}^N u_i(\mu) w_i(\mathbf{x}),$$

$$\begin{cases} \text{where } \mathbf{u}(\mu) = (u_1(\mu), \dots, u_N(\mu))^T \in \mathbb{R}^N \\ \text{is the solution of a linear system} \\ \mathbf{A}(\mu) \mathbf{u}(\mu) = \mathbf{f}(\mu). \end{cases}$$

Reduced Basis Methods (RBM)

$PDE : \mu \rightarrow u(\mu)$

$\mu \in \mathcal{G}$: Parameter

$$u_h(\mu; \mathbf{x}) = \sum_{i=1}^N u_i(\mu) w_i(\mathbf{x}),$$

$$\begin{cases} \text{where } \mathbf{u}(\mu) = (u_1(\mu), \dots, u_N(\mu))^T \in \mathbb{R}^N \\ \text{is the solution of a linear system} \\ \mathbf{A}(\mu) \mathbf{u}(\mu) = \mathbf{f}(\mu). \end{cases}$$

Aim of the reduced basis methods (RBM)

Solve the PDE as quickly as possible when it has to be evaluated for many parameter values

Reduced Basis Methods (RBM)

$$PDE : \mu \rightarrow u(\mu)$$

$\mu \in \mathcal{G}$: Parameter

$$u_h(\mu; \mathbf{x}) = \sum_{i=1}^N u_i(\mu) w_i(\mathbf{x}),$$

$$\begin{cases} \text{where } \mathbf{u}(\mu) = (u_1(\mu), \dots, u_N(\mu))^T \in \mathbb{R}^N \\ \text{is the solution of a linear system} \\ \mathbf{A}(\mu) \mathbf{u}(\mu) = \mathbf{f}(\mu). \end{cases}$$

Solution manifold

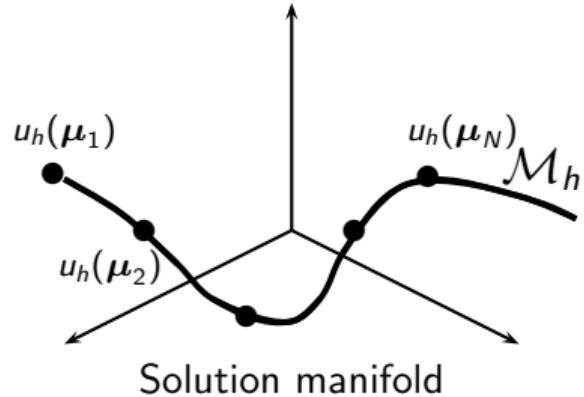
Solution manifold: $\mathcal{M} = \{u(\mu) \mid \mu \in \mathcal{G}\}$

HF solution manifold: $\mathcal{M}_h = \{u_h(\mu) \mid \mu \in \mathcal{G}\}$

Does the manifold have a favorable mathematical property that we could exploit?

Reduced space

\mathbb{V}^N Reduced space



Reduced Basis Methods (RBM)

$$PDE : \mu \rightarrow u(\mu)$$

$\mu \in \mathcal{G}$: Parameter

$$u_h(\mu; \mathbf{x}) = \sum_{i=1}^N u_i(\mu) w_i(\mathbf{x}),$$

$$\begin{cases} \text{where } \mathbf{u}(\mu) = (u_1(\mu), \dots, u_N(\mu))^T \in \mathbb{R}^N \\ \text{is the solution of a linear system} \\ \mathbf{A}(\mu) \mathbf{u}(\mu) = \mathbf{f}(\mu). \end{cases}$$

Solution manifold

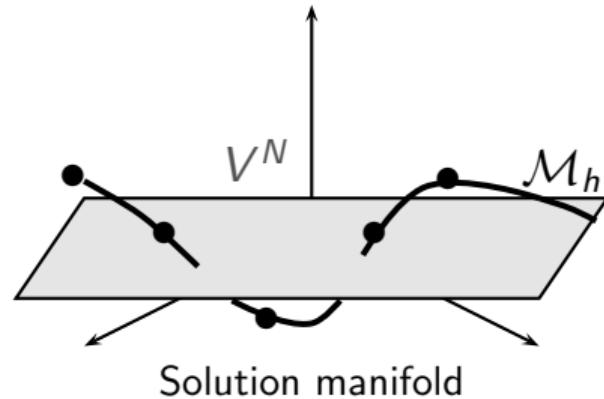
Solution manifold: $\mathcal{M} = \{u(\mu) \mid \mu \in \mathcal{G}\}$

HF solution manifold: $\mathcal{M}_h = \{u_h(\mu) \mid \mu \in \mathcal{G}\}$

Does the manifold have a favorable mathematical property that we could exploit?

Reduced space

V^N Reduced space



Reduced Basis Methods (RBM)

$$PDE : \mu \rightarrow u(\mu)$$

$\mu \in \mathcal{G}$: Parameter

$$u_h(\mu; \mathbf{x}) = \sum_{i=1}^N u_i(\mu) w_i(\mathbf{x}),$$

$$\begin{cases} \text{where } \mathbf{u}(\mu) = (u_1(\mu), \dots, u_N(\mu))^T \in \mathbb{R}^N \\ \text{is the solution of a linear system} \\ \mathbf{A}(\mu) \mathbf{u}(\mu) = \mathbf{f}(\mu). \end{cases}$$

Solution manifold

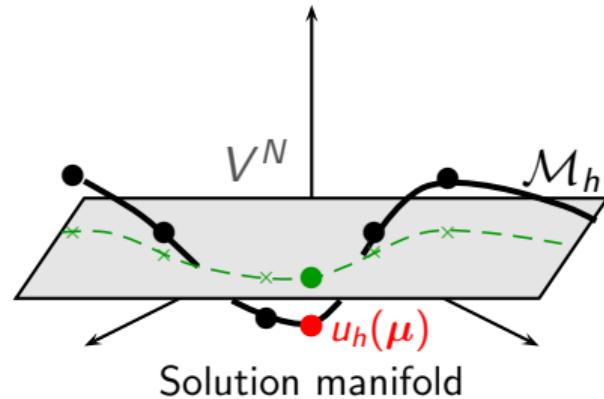
Solution manifold: $\mathcal{M} = \{u(\mu) \mid \mu \in \mathcal{G}\}$

HF solution manifold: $\mathcal{M}_h = \{u_h(\mu) \mid \mu \in \mathcal{G}\}$

Does the manifold have a favorable mathematical property that we could exploit?

Reduced space

V^N Reduced space



Reduced Basis Methods (RBM)

$$PDE : \mu \rightarrow u(\mu)$$

$\mu \in \mathcal{G}$: Parameter

$$u(\mu) : \text{Solution } u_h(\mu; \mathbf{x}) = \sum_{i=1}^N u_i(\mu) w_i(\mathbf{x}),$$

$$\begin{cases} \text{where } \mathbf{u}(\mu) = (u_1(\mu), \dots, u_N(\mu))^T \in \mathbb{R}^N \\ \text{is the solution of a linear system} \\ \mathbf{A}(\mu) \mathbf{u}(\mu) = \mathbf{f}(\mu). \end{cases}$$

Solution manifold

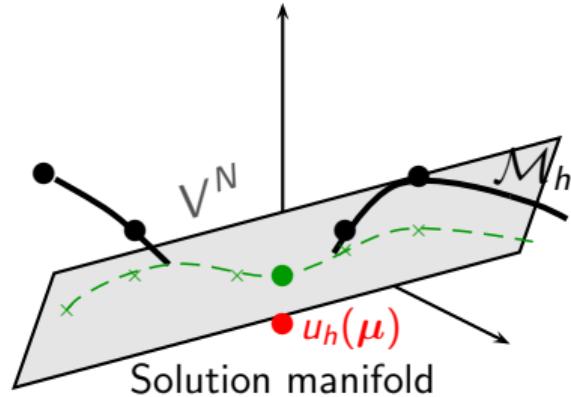
Solution manifold: $\mathcal{M} = \{u(\mu) \mid \mu \in \mathcal{G}\}$

HF solution manifold: $\mathcal{M}_h = \{u_h(\mu) \mid \mu \in \mathcal{G}\}$

Does the manifold have a favorable mathematical property that we could exploit?

Reduced space

V^N Reduced space



Reduced Basis Methods (RBM)

Solution manifold

Solution manifold: $\mathcal{M} = \{u(\mu) \mid \mu \in \mathcal{G}\}$

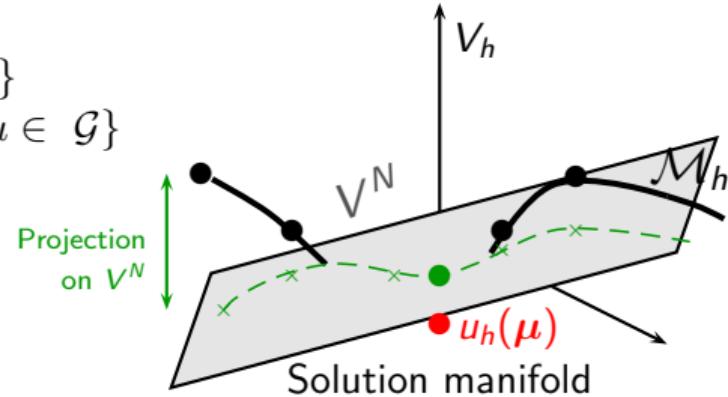
HF solution manifold: $\mathcal{M}_h = \{u_h(\mu) \mid \mu \in \mathcal{G}\}$

Reduced space

V^N Reduced space

Projection on V^N :

$$\inf_{v_N \in V^N} \|u_h - v_N\|_{V_h}.$$



We look for the reduced **linear** space that best fit the solution manifold:

$$\inf_{\substack{V^N \subset V_h \\ \dim(V^N)=N}} \sup_{u_h \in \mathcal{M}_h} \inf_{v_N \in V^N} \|u_h - v_N\|_{V_h}. \quad (M)$$

Reduced Basis Methods (RBM)

Solution manifold

Solution manifold: $\mathcal{M} = \{u(\mu) \mid \mu \in \mathcal{G}\}$

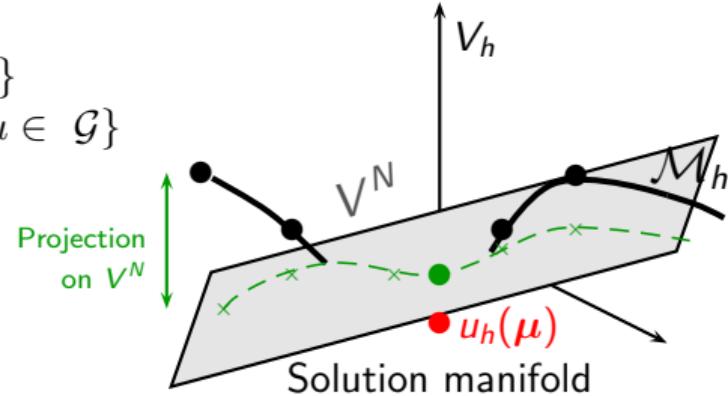
HF solution manifold: $\mathcal{M}_h = \{u_h(\mu) \mid \mu \in \mathcal{G}\}$

Reduced space

V^N Reduced space

Projection on V^N :

$$\inf_{v_N \in V^N} \|u_h - v_N\|_{V_h}.$$



We look for the reduced **linear** space that best fit the solution manifold:

$$\inf_{\substack{V^N \subset V_h \\ \dim(V^N)=N}} \sup_{u_h \in \mathcal{M}_h} \inf_{v_N \in V^N} \|u_h - v_N\|_{V_h}. \quad (M)$$

Reduced Basis Methods (RBM)

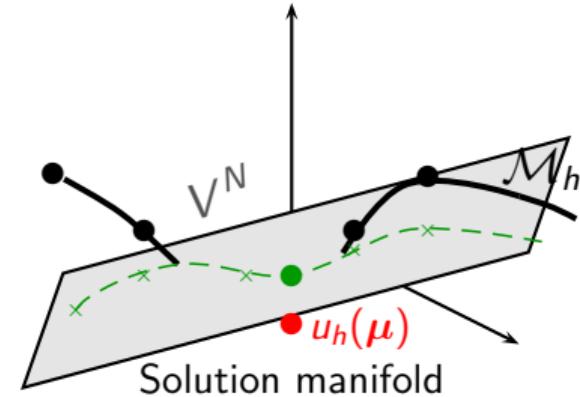
Kolmogorov N -width:

$$d_N(\mathcal{M}_h, V_h) = \inf_{\substack{V^N \subset V_h \\ \dim(V^N) = N}} \sup_{u_h \in \mathcal{M}_h} \inf_{v_N \in V^N} \|u_h - v_N\|_{V_h}.$$

Favorable case:

The Kolmogorov N -width is “sufficiently small”, for some N “not too large”. Typically, exponential decay

$$\exists, \tau, C > 0, \forall N > 1, \quad d_N(\mathcal{M}, V) \leq C e^{-\tau N}.$$



Few a priori results (first result due to Maday, Patera, and Turinici (2002))

Large number of a posteriori results, covering a wide range of applications (elliptic, parabolic, and some—but not all—hyperbolic equations).

Reduced Basis Methods

If we have N small enough, such that $d_N(\mathcal{M}_h, V_h) = \varepsilon$, and if we find the minimizing space V_N , then

$\forall \mu \in \mathcal{G}, \exists \alpha(\mu) = (\alpha_1(\mu), \dots, \alpha_N(\mu)) \in \mathbb{R}^N$ such that

$$\|u_h(\mu) - \sum_{n=1}^N \alpha_n(\mu) \Phi_n\|_V \leq \varepsilon,$$

with $\{\Phi_n\}_{1 \leq n \leq N}$ a basis of V^N , called **the reduced basis**.

Reduced Basis Methods

A reduced basis method is:

- ◊ **A reduced space spanned by a reduced basis:** how to build the infimum space V^N (or to approach it)?
- ◊ **An approximation (in the reduced space):** how to find the N coefficients $(\alpha_1(\mu), \dots, \alpha_N(\mu)) \in \mathbb{R}^N$ such that

$$u_N(\mu) = \sum_{n=1}^N \alpha_n(\mu) \Phi_n$$

be the best approximation of $u(\mu)$ on V^N ?

$u_N(\mu) \in V^N$ is called **the reduced basis approximation**.

Reduced Basis Methods

A reduced basis method is:

- ◊ **A reduced space spanned by a reduced basis:** how to build the infimum space V^N (or to approach it)?
- ◊ **An approximation (in the reduced space):** how to find the N coefficients $(\alpha_1(\mu), \dots, \alpha_N(\mu)) \in \mathbb{R}^N$ such that

$$u_N(\mu) = \sum_{n=1}^N \alpha_n(\mu) \Phi_n$$

be the best approximation of $u(\mu)$ on V^N ?

Remarks: The best coefficients are the projection coefficients of $u_h(\mu)$:

$$\alpha_n(\mu) = (u_h(\mu), \Phi_n).$$

But of course, we don't want to compute $u_h(\mu)$...

Reduced basis methods

- ◊ Galerkin-POD^a
- ◊ Petrov-Galerkin RBM^b
- ◊ EIM^c
- ◊ POD-DL-ROM^d
- ◊ 2-grid method^e
- ◊ POD-I^f (Reg, NN)
- ◊ PBDW^g
- ◊ PGD^h
- ◊ Surrogate problemsⁱ
- ◊ Operator inference^j
- ...

^aJ.L. Lumley. *The structure of inhomogeneous turbulent flows*. 1967

^bK. Carlberg, M. Barone, H. Antil. *Galerkin v. least-squares Petrov-Galerkin projection in nonlinear model reduction*. 2017

^cM. Barrault, Y. Maday, NC. Nguyen, AT. Patera *An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations*. 2004.

^dS. Fresca, A. Manzoni *POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by pod*. 2022

^eChakir, R. & Maday, Y. *A two-grid finite-element/reduced basis scheme for the approximation of the solution of parameter dependent PDE*. 2009

^fD. Xiao, F. Fang, C. Pain, G. Hu. *Non-intrusive reduced-order modelling of the Navier-Stokes equations based on RBF interpolation*. 2015.

^gJ.K. Hammond, R. Chakir, F. Bourquin, Y. Maday. *PBDW: A non-intrusive Reduced Basis Data Assimilation method and its application to an urban dispersion modeling framework*. 2019

^hX. Zou, M. Conti, P. Diez and F. Auricchio *A non-intrusive proper generalized decomposition scheme with application in biomechanics*. 2017

ⁱT. Guo, O. Rokoš, K. Veroy, *Learning constitutive models from microstructural simulations via a non-intrusive reduced basis method*. 2021

^jP. Benner, P. Goyal, B. Kramer, B. Peherstorfer, K. Willcox, *Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms*. 2021

Reduced basis methods: <https://reducedbasis.github.io>

- ◊ Galerkin-POD^a
- ◊ Petrov-Galerkin RBM^b
- ◊ EIM^c
- ◊ POD-DL-ROM^d
- ◊ 2-grid method^e
- ◊ POD-I^f (Reg, NN)
- ◊ PBDW^g
- ◊ PGD^h
- ◊ Surrogate problemsⁱ
- ◊ Operator inference^j
- ...

^aJ.L. Lumley. *The structure of inhomogeneous turbulent flows*. 1967

^bK. Carlberg, M. Barone, H. Antil. *Galerkin v. least-squares Petrov-Galerkin projection in nonlinear model reduction*. 2017

^cM. Barrault, Y. Maday, NC. Nguyen, AT. Patera *An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations*. 2004.

^dS. Fresca, A. Manzoni *POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by pod*. 2022

^eChakir, R. & Maday, Y. *A two-grid finite-element/reduced basis scheme for the approximation of the solution of parameter dependent PDE*. 2009

^fD. Xiao, F. Fang, C. Pain, G. Hu. *Non-intrusive reduced-order modelling of the Navier-Stokes equations based on RBF interpolation*. 2015.

^gJ.K. Hammond, R. Chakir, F. Bourquin, Y. Maday. *PBDW: A non-intrusive Reduced Basis Data Assimilation method and its application to an urban dispersion modeling framework*. 2019

^hX. Zou, M. Conti, P. Diez and F. Auricchio *A non-intrusive proper generalized decomposition scheme with application in biomechanics*. 2017

ⁱT. Guo, O. Rokoš, K. Veroy, *Learning constitutive models from microstructural simulations via a non-intrusive reduced basis method*. 2021

^jP. Benner, P. Goyal, B. Kramer, B. Peherstorfer, K. Willcox, *Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms*. 2021

Reduced Basis Methods

- ◊ **Offline** Construction of a reduced space V_N spanned by a reduced basis.
- ◊ **Online** Computation of the reduced coefficients α .

The optimal reduced space V^N may not be found

Two main algorithms to find approximated reduced spaces: **the Proper Orthogonal Decomposition (POD) or greedy algorithms.**

In general, greedy algorithms are more efficient if they are combined with **aposteriori errors**.

Reduced Basis Methods

- ◊ **Offline** Construction of a reduced space V_N spanned by a reduced basis.
- ◊ **Online** Computation of the reduced coefficients α .

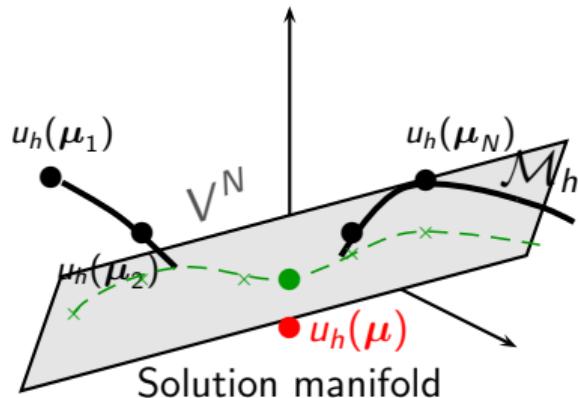
The optimal reduced space V^N may not be found

Two main algorithms to find approximated reduced spaces: **the Proper Orthogonal Decomposition (POD) or greedy algorithms.**

In general, greedy algorithms are more efficient if they are combined with **aposteriori errors**.

Reduced Basis Methods

In both cases, the set of basis functions is derived from HF solutions for several well chosen parameter values, $\{u_h(\mu_1), \dots, u_h(\mu_N)\}$, called **the snapshots**.



Sum up

Sum up

- ◊ Resolution by a classical discretization method (FEM/FV ...) A system of size dependent of the number of degrees of freedom \mathcal{N} needs to be solved!
How to decrease the High-Fidelity (HF) code execution runtimes when we need to solve the problem for **many different parameter values?**

ROM: Reduce the dimension of the algebraic system arising from the discretization of a PDE.

- ◊ RBM: The solution is obtained with a projection of the HF problem onto a reduced subspace.
- ◊ How to obtain the reduced basis?
POD (TP1) /Greedy algorithms (TP2)
- ◊ How to project the HF problem onto the reduced space?

Sum up

- ◊ Resolution by a classical discretization method (FEM/FV ...) A system of size dependent of the number of degrees of freedom \mathcal{N} needs to be solved!
How to decrease the High-Fidelity (HF) code execution runtimes when we need to solve the problem for **many different parameter values?**

ROM: Reduce the dimension of the algebraic system arising from the discretization of a PDE.

- ◊ RBM: The solution is obtained with a projection of the HF problem onto a reduced subspace.
- ◊ How to obtain the reduced basis?
POD (TP1) /Greedy algorithms (TP2)
- ◊ How to project the HF problem onto the reduced space?

Sum up

- ◊ Resolution by a classical discretization method (FEM/FV ...) A system of size dependent of the number of degrees of freedom \mathcal{N} needs to be solved!
How to decrease the High-Fidelity (HF) code execution runtimes when we need to solve the problem for **many different parameter values?**

ROM: Reduce the dimension of the algebraic system arising from the discretization of a PDE.

- ◊ RBM: The solution is obtained with a projection of the HF problem onto a reduced subspace.
- ◊ How to obtain the reduced basis?
POD (TP1) /Greedy algorithms (TP2)
- ◊ How to project the HF problem onto the reduced space?

Sum up

- ◊ Resolution by a classical discretization method (FEM/FV ...) A system of size dependent of the number of degrees of freedom \mathcal{N} needs to be solved!
How to decrease the High-Fidelity (HF) code execution runtimes when we need to solve the problem for **many different parameter values?**

ROM: Reduce the dimension of the algebraic system arising from the discretization of a PDE.

- ◊ RBM: The solution is obtained with a projection of the HF problem onto a reduced subspace.
- ◊ How to obtain the reduced basis?
POD (TP1) /Greedy algorithms (TP2)
- ◊ How to project the HF problem onto the reduced space?

1 Introduction

2 POD-Galerkin

POD-Galerkin

Let's get back to our sheep

linear second-order parameter dependent problem

$$\begin{cases} -\nabla \cdot (a(\mu) \nabla u) = f(\mu) & \text{dans } \Omega, \\ u = 0 & \text{sur } \partial\Omega. \end{cases}$$

$u(\mathbf{x}; \mu) \in V$: Unknowns,

$\mu \in \mathcal{G}$: Variable parameter,

Exercise

1. Write the weak formulation of the problem.
2. Prove that the problem is well-posed under some conditions.

Context: $V_N \subset V$ is a subspace of dimension N .

Definition

The Galerkin reduced-basis approximation is the function $u_N(\mu) \in V_N$ satisfying the weak form

$$\forall v_N \in V_N, \quad a(u_N(\mu), v_N; \mu) = \ell(v_N; \mu).$$

Exercise

Show that if $a(\cdot, \cdot; \mu) : V \times V \rightarrow \mathbb{R}$ is coercive, then the Galerkin reduced-basis approximation exists and is unique.

Assume the weak formulation of the HF problem yields the discretized system

$$\mathbf{A}(\mu)\mathbf{u}(\mu) = \mathbf{I}(\mu)$$

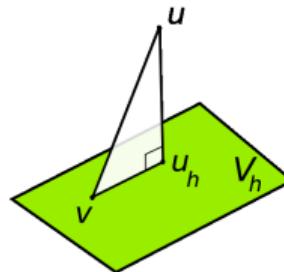
then

$$a(u_N(\mu), v_N; \mu) = \ell(v_N; \mu)$$

gives a new system to solved:

$$\boxed{\mathbf{P}^T \mathbf{A}(\mu) \mathbf{P} \alpha(\mu) = \mathbf{P}^T \mathbf{I}(\mu),} \quad (\text{G-RB})$$

where $\mathbf{P} \in \mathbb{R}^{N \times N}$.



G-RB proof

FEM recall: Standard FEM Galerkin condition

The error e_h is orthogonal to the test space V_h in the energy inner product induced by $a(\cdot, \cdot)$:

$$a(e_h, v_h) = a(u - u_h, v_h) = 0, \quad \forall v_h \in V_h.$$

Consider the weak residual $r(v_h) = \ell(v_h) - a(u_h, v_h)$. Then

$$r(v_h) = a(u, v_h) - a(u_h, v_h) = a(e_h, v_h) = 0, \quad \forall v_h \in V_h.$$

In other words, the residual vanishes on the test space.

POD-Galerkin

Let $\mathbf{P} = [\Phi_1, \dots, \Phi_N] \in \mathbb{R}^{N \times N}$, i.e. $\Phi_j = \sum_{i=1}^N P_{ij} w_i$ and $P = (P_{ij}) \in \mathbb{R}^{N \times N}$.
 $u_N(\mu) = \sum_{n=1}^N \alpha_n(\mu) \Phi_n = \mathbf{P} \alpha(\mu)$, $\alpha = \alpha(\mu) \in \mathbb{R}^N$, $\mathbf{r}(\alpha) = \mathbf{I}(\mu) - \mathbf{A}(\mu)(\mathbf{P} \alpha)$.

RB Galerkin condition

1. The residual is orthogonal to the test space V_N : $\mathbf{r}(v_N)^\top \mathbf{r}(v_N) = 0, \forall v_N \in V_N$.
2. With HF basis $\{w_i\}_{i=1}^N$, we know that:

$$\ell(v_N) = \mathbf{v}_N^\top \mathbf{I}, \quad a(u_N, v_N) = \mathbf{v}_N^\top \mathbf{A} \mathbf{u}_N, \quad \forall v_N \in V_N \subset V_h,$$

with $\mathbf{A}_{ij} = a(w_j, w_i)$, $\mathbf{I}_i = \ell(w_i)$

So $\mathbf{r}(v_N) = \mathbf{v}_N^\top \mathbf{r}$. Thus, $\forall v_N \in V_N$, $\mathbf{v}_N^\top \mathbf{r}(\alpha) = 0$.

3. But $v_N \in V_N$, so $\mathbf{v}_N = \mathbf{P} \beta$ with $\beta \in \mathbb{R}^N$, and $(\mathbf{P} \beta)^\top (\mathbf{I}(\mu) - \mathbf{A}(\mu)(\mathbf{P} \alpha(\mu))) = 0$.
True for all $\beta \in \mathbb{R}^N$: $\mathbf{P}^\top (\mathbf{I}(\mu) - \mathbf{A}(\mu) \mathbf{P} \alpha(\mu)) = 0$. Thus,

$$\mathbf{P}^\top \mathbf{A}(\mu) \mathbf{P} \alpha(\mu) = \mathbf{P}^\top \mathbf{I}(\mu).$$

POD-Galerkin

Let $\mathbf{P} = [\Phi_1, \dots, \Phi_N] \in \mathbb{R}^{N \times N}$, i.e. $\Phi_j = \sum_{i=1}^N P_{ij} w_i$ and $P = (P_{ij}) \in \mathbb{R}^{N \times N}$.
 $u_N(\mu) = \sum_{n=1}^N \alpha_n(\mu) \Phi_n = \mathbf{P} \alpha(\mu)$, $\alpha = \alpha(\mu) \in \mathbb{R}^N$, $\mathbf{r}(\alpha) = \mathbf{I}(\mu) - \mathbf{A}(\mu)(\mathbf{P} \alpha)$.

RB Galerkin condition

1. The residual is orthogonal to the test space V_N : $\mathbf{r}(v_N) = 0$, $\forall v_N \in V_N$.
2. With HF basis $\{w_i\}_{i=1}^N$, we know that:

$$\ell(v_N) = \mathbf{v}_N^T \mathbf{I}, \quad a(u_N, v_N) = \mathbf{v}_N^T \mathbf{A} \mathbf{u}_N, \quad \forall v_N \in V_N \subset V_h,$$

with $\mathbf{A}_{ij} = a(w_j, w_i)$, $\mathbf{I}_i = \ell(w_i)$

So $\mathbf{r}(v_N) = \mathbf{v}_N^T \mathbf{r}$. Thus, $\forall v_N \in V_N$, $\mathbf{v}_N^T \mathbf{r}(\alpha) = 0$.

3. But $v_N \in V_N$, so $\mathbf{v}_N = \mathbf{P} \beta$ with $\beta \in \mathbb{R}^N$, and $(\mathbf{P} \beta)^T (\mathbf{I}(\mu) - \mathbf{A}(\mu)(\mathbf{P} \alpha(\mu))) = 0$.
True for all $\beta \in \mathbb{R}^N$: $\mathbf{P}^T (\mathbf{I}(\mu) - \mathbf{A}(\mu) \mathbf{P} \alpha(\mu)) = 0$. Thus,

$$\mathbf{P}^T \mathbf{A}(\mu) \mathbf{P} \alpha(\mu) = \mathbf{P}^T \mathbf{I}(\mu).$$

Let $\mathbf{P} = [\Phi_1, \dots, \Phi_N] \in \mathbb{R}^{N \times \mathcal{N}}$, i.e. $\Phi_j = \sum_{i=1}^{\mathcal{N}} P_{ij} w_i$ and $P = (P_{ij}) \in \mathbb{R}^{N \times \mathcal{N}}$.
 $u_N(\mu) = \sum_{n=1}^N \alpha_n(\mu) \Phi_n = \mathbf{P} \alpha(\mu)$, $\alpha = \alpha(\mu) \in \mathbb{R}^N$, $\mathbf{r}(\alpha) = \mathbf{I}(\mu) - \mathbf{A}(\mu)(\mathbf{P} \alpha)$.

RB Galerkin condition

1. The residual is orthogonal to the test space V_N : $\mathbf{r}(v_N) = 0$, $\forall v_N \in V_N$.
2. With HF basis $\{w_i\}_{i=1}^{\mathcal{N}}$, we know that:

$$\ell(v_N) = \mathbf{v}_N^T \mathbf{I}, \quad a(u_N, v_N) = \mathbf{v}_N^T \mathbf{A} \mathbf{u}_N, \quad \forall v_N \in V_N \subset V_h,$$

with $\mathbf{A}_{ij} = a(w_j, w_i)$, $\mathbf{I}_i = \ell(w_i)$

So $\mathbf{r}(v_N) = \mathbf{v}_N^T \mathbf{r}$. Thus, $\forall v_N \in V_N$, $\mathbf{v}_N^T \mathbf{r}(\alpha) = 0$.

3. But $v_N \in V_N$, so $\mathbf{v}_N = \mathbf{P} \beta$ with $\beta \in \mathbb{R}^N$, and $(\mathbf{P} \beta)^T (\mathbf{I}(\mu) - \mathbf{A}(\mu)(\mathbf{P} \alpha(\mu))) = 0$.
 True for all $\beta \in \mathbb{R}^N$: $\mathbf{P}^T (\mathbf{I}(\mu) - \mathbf{A}(\mu) \mathbf{P} \alpha(\mu)) = 0$. Thus,

$$\mathbf{P}^T \mathbf{A}(\mu) \mathbf{P} \alpha(\mu) = \mathbf{P}^T \mathbf{I}(\mu).$$

Let $\mathbf{P} = [\Phi_1, \dots, \Phi_N] \in \mathbb{R}^{N \times \mathcal{N}}$, i.e. $\Phi_j = \sum_{i=1}^{\mathcal{N}} P_{ij} w_i$ and $P = (P_{ij}) \in \mathbb{R}^{N \times \mathcal{N}}$.
 $u_N(\mu) = \sum_{n=1}^N \alpha_n(\mu) \Phi_n = \mathbf{P} \alpha(\mu)$, $\alpha = \alpha(\mu) \in \mathbb{R}^N$, $\mathbf{r}(\alpha) = \mathbf{I}(\mu) - \mathbf{A}(\mu)(\mathbf{P} \alpha)$.

RB Galerkin condition

1. The residual is orthogonal to the test space V_N : $\mathbf{r}(v_N) = 0$, $\forall v_N \in V_N$.
2. With HF basis $\{w_i\}_{i=1}^{\mathcal{N}}$, we know that:

$$\ell(v_N) = \mathbf{v}_N^T \mathbf{I}, \quad a(u_N, v_N) = \mathbf{v}_N^T \mathbf{A} \mathbf{u}_N, \quad \forall v_N \in V_N \subset V_h,$$

with $\mathbf{A}_{ij} = a(w_j, w_i)$, $\mathbf{I}_i = \ell(w_i)$

So $\mathbf{r}(v_N) = \mathbf{v}_N^T \mathbf{r}$. Thus, $\forall v_N \in V_N$, $\mathbf{v}_N^T \mathbf{r}(\alpha) = 0$.

3. But $v_N \in V_N$, so $\mathbf{v}_N = \mathbf{P} \beta$ with $\beta \in \mathbb{R}^N$, and $(\mathbf{P} \beta)^T (\mathbf{I}(\mu) - \mathbf{A}(\mu)(\mathbf{P} \alpha(\mu))) = 0$.
 True for all $\beta \in \mathbb{R}^N$: $\mathbf{P}^T (\mathbf{I}(\mu) - \mathbf{A}(\mu) \mathbf{P} \alpha(\mu)) = 0$. Thus,

$$\mathbf{P}^T \mathbf{A}(\mu) \mathbf{P} \alpha(\mu) = \mathbf{P}^T \mathbf{I}(\mu).$$

POD-Galerkin

Interpretation: With the standard RB Galerkin projection, we look for α that minimizes the error in the energy norm.

$$u_N = \arg \min_{v_N \in V_N} \|u - v_N\|_a$$

Now, we get a system where the inversion cost is in $\mathcal{O}(N^3)$ since dimensions : $\mathbf{P}^T \mathbf{A}(\mu) \mathbf{P} \in \mathbb{R}^{N \times N}$ and $\mathbf{P}^T b \in \mathbb{R}^N$!

Remarks

- ◊ Other projections can be considered (e.g. Petrov-Galerkin projection $\mathbf{W}^T \mathbf{A} \mathbf{P} \alpha = \mathbf{W}^T \mathbf{I}$ with a test basis $\mathbf{W} \neq \mathbf{P}$).
- ◊ In (G-RB), we first need to assemble $\mathbf{A}(\mu) \in \mathbb{R}^{\mathcal{N} \times \mathcal{N}}$.

Exercise

Consider the PDE model and derive an offline/online strategy to overcome the complexity of the assembly process.

Affine operator definition

the bilinear form $a(\cdot, \cdot; \mu) : V \times V \rightarrow \mathbb{R}$ is affine if there exist

- ◇ Q^a functions $\theta_q^a : \mathcal{G} \rightarrow \mathbb{R}$, $1 \leq q \leq Q^a$ bounded (i.e. $\theta_q^a(\mathcal{G})$),
- ◇ Q^a functions $a_q : V \times V \rightarrow \mathbb{R}$, $1 \leq q \leq Q^a$

such that

$$\forall \mu \in \mathcal{G}, \forall (u, v) \in V \times V, a(u, v; \mu) = \sum_{q=1}^{Q^a} \theta_q^a(\mu) a_q(u, v).$$

$$\mathbf{A}(\mu) = \sum_{q=1}^{Q^a} \theta_q^a(\mu) \mathbf{A}_q.$$

**And surprisingly for I ...
definition**

the linear for $I(\cdot; \mu) : V'$ is affine if there exist

- ◇ Q' functions $\theta_I^a : \mathcal{G} \rightarrow \mathbb{R}$, $1 \leq q \leq Q'$ bounded (i.e. $\theta_q^I(\mathcal{G})$),
- ◇ Q' functions $I_q : V'$, $1 \leq q \leq Q'$

such that

$$\forall \mu \in \mathcal{G}, \forall v \in V, a(v; \mu) = \sum_{q=1}^{Q'} \theta_q^I(\mu) I_q(v).$$

$$I(\mu) = \sum_{q=1}^{Q'} \theta_q^I(\mu) I_q.$$

POD-Galerkin

Assembling cost with the affine operators:
 $\mathcal{O}(N^2Q^a + NQ^I)$ with

$$\mathbf{P}^T \mathbf{A}(\mu) \mathbf{P} = \sum_{q=1}^{Q^a} \theta_q^a(\mu) \underbrace{\mathbf{P}^T \mathbf{A}_q \mathbf{P}}_{\text{precomputed offline}} , \quad \mathbf{P}^T \mathbf{I}(\mu) = \sum_{q=1}^{Q^I} \theta_q^I(\mu) \underbrace{\mathbf{P}^T \mathbf{I}_q}_{\text{precomputed offline}} .$$

POD-Galerkin

Visit <https://reducedbasis.github.io/docs/pod/> for the reduced basis Galerkin approximation of the Navier-Stokes problem.

Sum up

Sum up

- ◊ Resolution by a classical discretization method (FEM/FV ...)
A system of size dependent of the number of degrees of freedom \mathcal{N} needs to be solved!
How to decrease the High-Fidelity (HF) code execution runtimes when we need to solve the problem for **many different parameter values**?

ROM: Reduce the dimension of the algebraic system arising from the discretization of a PDE.

- ◊ RBM: The solution is obtained with a projection of the HF problem onto a reduced subspace.
- ◊ How to obtain the reduced basis?
POD (TP1) /Greedy algorithms (**TP2**)
- ◊ How to project the HF problem onto the reduced space?
Galerkin projections

Sum up

- ◊ Resolution by a classical discretization method (FEM/FV ...)
A system of size dependent of the number of degrees of freedom \mathcal{N} needs to be solved!
How to decrease the High-Fidelity (HF) code execution runtimes when we need to solve the problem for **many different parameter values**?

ROM: Reduce the dimension of the algebraic system arising from the discretization of a PDE.

- ◊ RBM: The solution is obtained with a projection of the HF problem onto a reduced subspace.
- ◊ How to obtain the reduced basis?
POD (TP1) /Greedy algorithms (**TP2**)
- ◊ How to project the HF problem onto the reduced space?
Galerkin projections

Sum up

- ◊ Resolution by a classical discretization method (FEM/FV ...)
A system of size dependent of the number of degrees of freedom \mathcal{N} needs to be solved!
How to decrease the High-Fidelity (HF) code execution runtimes when we need to solve the problem for **many different parameter values**?

ROM: Reduce the dimension of the algebraic system arising from the discretization of a PDE.

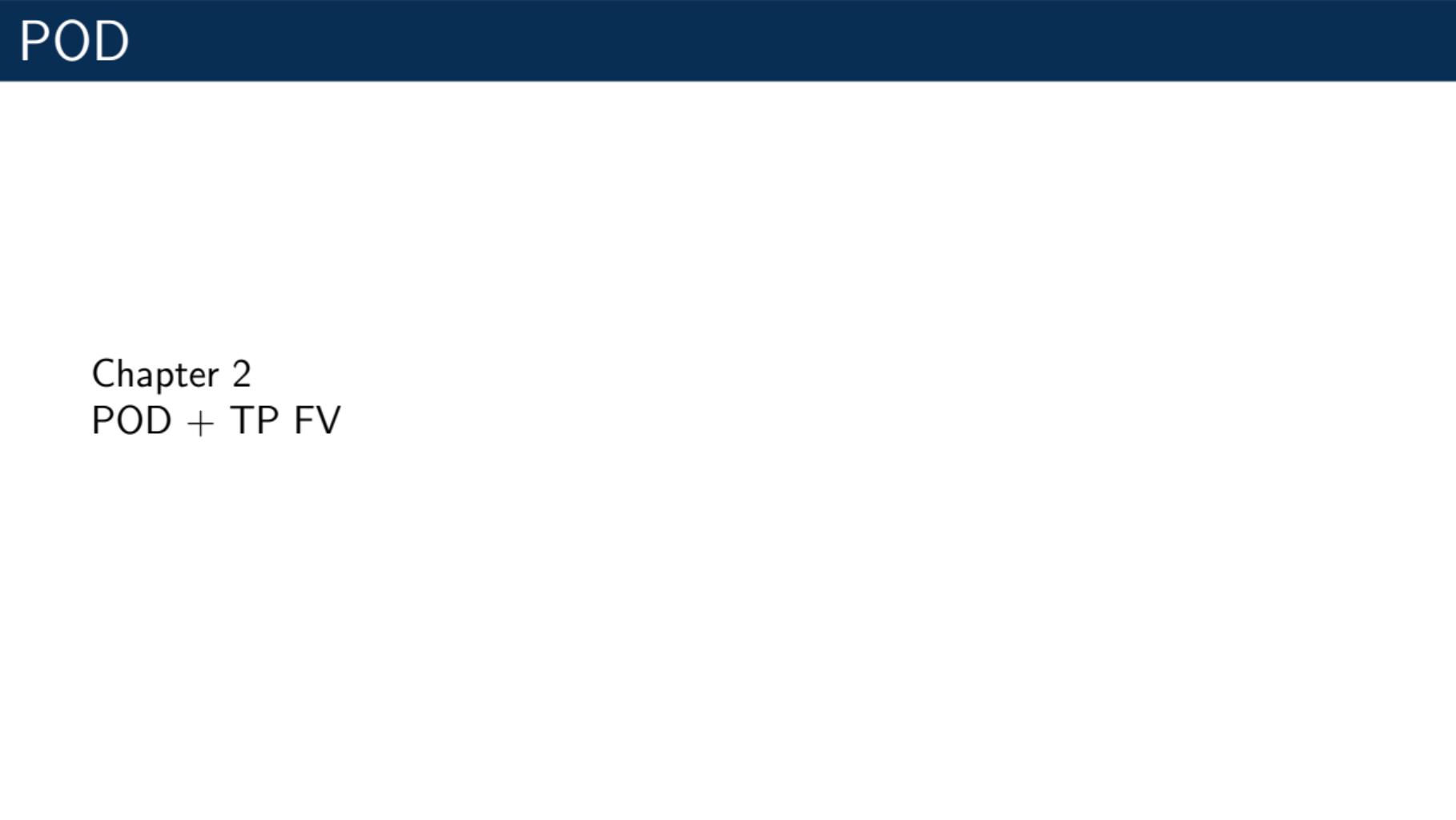
- ◊ RBM: The solution is obtained with a projection of the HF problem onto a reduced subspace.
- ◊ How to obtain the reduced basis?
POD (TP1) /Greedy algorithms (**TP2**)
- ◊ How to project the HF problem onto the reduced space?
Galerkin projections

Sum up

- ◊ Resolution by a classical discretization method (FEM/FV ...)
A system of size dependent of the number of degrees of freedom \mathcal{N} needs to be solved!
How to decrease the High-Fidelity (HF) code execution runtimes when we need to solve the problem for **many different parameter values**?

ROM: Reduce the dimension of the algebraic system arising from the discretization of a PDE.

- ◊ RBM: The solution is obtained with a projection of the HF problem onto a reduced subspace.
- ◊ How to obtain the reduced basis?
POD (TP1) /Greedy algorithms (**TP2**)
- ◊ How to project the HF problem onto the reduced space?
Galerkin projections



Chapter 2

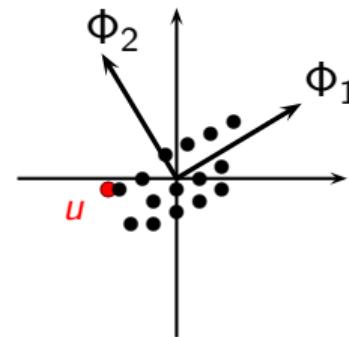
POD + TP FV

POD: Continuous version

We want to approximate $u(\mathbf{x}, \mu)$ by $\sum_{k=1}^N a_k(\mu) \Phi_k(\mathbf{x})$.

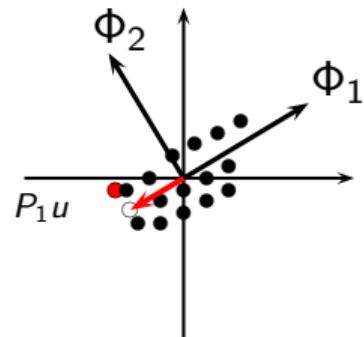
Let us consider μ a random variable and u centered ($\mathbb{E}_\mu[u] = 0$).

POD = PCA: We want to find the axes that best represent the data!



$$\min_{\|\Phi_i\|=1} \mathbb{E}[\|u - \sum_{k=1}^N a_k(\mu) \Phi_k\|^2].$$

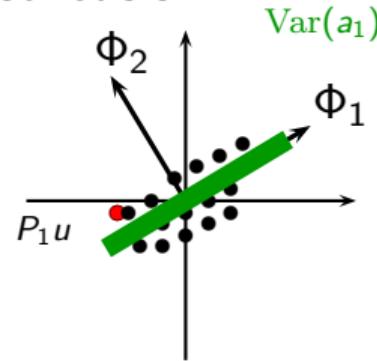
POD: Continuous version



Snapshot projection over Φ_1 : $(u, \Phi_1)\Phi_1$

POD: Continuous version

How do we find the reduced basis?



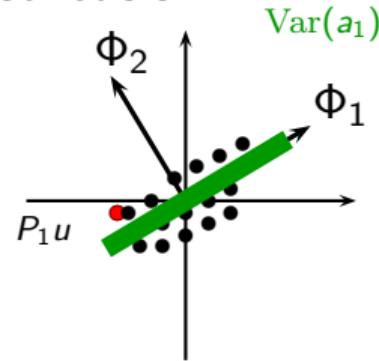
$$Var(a_1) = \mathbb{E}[a_1^2] - (\mathbb{E}[a_1])^2 = \mathbb{E}[a_1^2]$$

$$a_1 = (u, \Phi_1), \quad \|\Phi_1\| = 1.$$

$$\min_{\|\Phi_1\|=1} \mathbb{E}[\|u - (u, \Phi_1)\Phi_1\|^2] \text{ or } \max_{\|\Phi_1\|=1} \mathbb{E}[|(u, \Phi_1)|^2].$$

POD: Continuous version

How do we find the reduced basis?



$$Var(a_1) = \mathbb{E}[a_1^2] - (\mathbb{E}[a_1])^2 = \mathbb{E}[a_1^2]$$

$$a_1 = (u, \Phi_1), \quad \|\Phi_1\| = 1.$$

$$\min_{\|\Phi_1\|=1} \mathbb{E}[\|u - (u, \Phi_1)\Phi_1\|^2] \text{ or } \max_{\|\Phi_1\|=1} \mathbb{E}[|(u, \Phi_1)|^2].$$

POD: Continuous version

We want to approximate $u(\mathbf{x}, \mu)$ by $\sum_{k=1}^N a_k(\mu) \Phi_k(\mathbf{x})$,
with $\Phi_k \in L^2(\Omega)$ + orthonormality $\int_{\Omega} \Phi_i(\mathbf{x}) \Phi_j(\mathbf{x}) d\mathbf{x} = \delta_{ij}$.

We look for Φ_i , $i = 1, \dots, N$ that maximize the average projection:

$$\max_{\|\Phi_i\|=1} \mathbb{E}[|(u, \Phi_i)|^2].$$

With $\Phi_1 \in V$ where V is a real Hilbert space, one can show that this maximization problem is equivalent to a spectral problem

$$C\Phi_1 = \lambda_1 \Phi_1$$

(assuming that the dominated convergence theorem can be applied).

POD: Continuous version

Proof

Lagrangian: $J[\Phi_1] = \mathbb{E}[|(u, \Phi_1)|^2] - \lambda(\|\Phi_1\|^2 - 1)$.

Directional derivative (with a small variation Ψ):

$J[\Phi + \delta\Psi] = \mathbb{E}[|(u, \Phi + \delta\Psi)|^2] - \lambda(\|\Phi + \delta\Psi\|^2 - 1)$.

$$\frac{d}{d\delta} J[\Phi + \delta\Psi]_{|\delta=0} = 0.$$

◇ $(u, \Phi + \delta\Psi) = (u, \Phi) + \delta(u, \Psi)$,

so $(u, \Phi + \delta\Psi)^2 = (u, \Phi)^2 + 2\delta(u, \Phi)(u, \Psi) + O(\delta^2)$

and with average:

$$\mathbb{E}[(u, \Phi + \delta\Psi)^2] = \mathbb{E}[(u, \Phi)^2] + 2\delta\mathbb{E}[(u, \Phi)(u, \Psi)] + O(\delta^2)$$

So $\boxed{\frac{d}{d\delta}\mathbb{E}[(u, \Phi + \delta\Psi)^2]_{|\delta=0} = 2\mathbb{E}[(u, \Phi)(u, \Psi)]}$

◇ $(\Phi + \delta\Psi, \Phi + \delta\Psi) = (\Phi, \Phi) + 2\delta(\Phi, \Psi) + O(\delta^2)$, so

$\boxed{\frac{d}{d\delta}(\Phi + \delta\Psi, \Phi + \delta\Psi)_{|\delta=0} = 2(\Phi, \Psi)}$

POD: Continuous version

Proof

Lagrangian: $J[\Phi_1] = \mathbb{E}[|(u, \Phi_1)|^2] - \lambda(\|\Phi_1\|^2 - 1)$.

Directional derivative (with a small variation Ψ):

$J[\Phi + \delta\Psi] = \mathbb{E}[|(u, \Phi + \delta\Psi)|^2] - \lambda(\|\Phi + \delta\Psi\|^2 - 1)$.

$$\frac{d}{d\delta} J[\Phi + \delta\Psi]_{|\delta=0} = 0.$$

◇ $(u, \Phi + \delta\Psi) = (u, \Phi) + \delta(u, \Psi)$,

so $(u, \Phi + \delta\Psi)^2 = (u, \Phi)^2 + 2\delta(u, \Phi)(u, \Psi) + O(\delta^2)$

and with average:

$$\mathbb{E}[(u, \Phi + \delta\Psi)^2] = \mathbb{E}[(u, \Phi)^2] + 2\delta\mathbb{E}[(u, \Phi)(u, \Psi)] + O(\delta^2)$$

So
$$\boxed{\frac{d}{d\delta}\mathbb{E}[(u, \Phi + \delta\Psi)^2]_{|\delta=0} = 2\mathbb{E}[(u, \Phi)(u, \Psi)]}$$

◇ $(\Phi + \delta\Psi, \Phi + \delta\Psi) = (\Phi, \Phi) + 2\delta(\Phi, \Psi) + O(\delta^2)$, so

$$\boxed{\frac{d}{d\delta}(\Phi + \delta\Psi, \Phi + \delta\Psi)_{|\delta=0} = 2(\Phi, \Psi).}$$

POD: Continuous version

Proof

Altogether, we obtain:

$$\boxed{\mathbb{E}[(u, \Phi)(u, \Psi)] - \lambda(\Phi, \Psi) = 0}$$

Let C be such that $(C\Phi, \Psi) = \mathbb{E}[(u, \Phi)(u, \Psi)]$. Then

$$(C\Phi, \Psi) = \lambda(\Phi, \Psi), \forall \Psi.$$

Since true for all Ψ , we obtain:

$$\boxed{\mathbb{E}[(u, \Phi)u] = \lambda\Phi, \text{ i. e. } C\Phi = \lambda\Phi.}$$

We can prove that C is a positive linear compact self-adjoint operator: the problem is well-posed.

POD: Continuous version

Proof

Altogether, we obtain:

$$\boxed{\mathbb{E}[(u, \Phi)(u, \Psi)] - \lambda(\Phi, \Psi) = 0}$$

Let C be such that $(C\Phi, \Psi) = \mathbb{E}[(u, \Phi)(u, \Psi)]$. Then

$$(C\Phi, \Psi) = \lambda(\Phi, \Psi), \forall \Psi.$$

Since true for all Ψ , we obtain:

$$\boxed{\mathbb{E}[(u, \Phi)u] = \lambda\Phi, \text{ i. e. } C\Phi = \lambda\Phi.}$$

We can prove that C is a positive linear compact self-adjoint operator: the problem is well-posed.

POD: Continuous version

Proof

Altogether, we obtain:

$$\mathbb{E}[(u, \Phi)(u, \Psi)] - \lambda(\Phi, \Psi) = 0$$

Let C be such that $(C\Phi, \Psi) = \mathbb{E}[(u, \Phi)(u, \Psi)]$. Then

$$(C\Phi, \Psi) = \lambda(\Phi, \Psi), \forall \Psi.$$

Since true for all Ψ , we obtain:

$$\mathbb{E}[(u, \Phi)u] = \lambda\Phi, \text{ i. e. } C\Phi = \lambda\Phi.$$

We can prove that C is a positive linear compact self-adjoint operator: the problem is well-posed.

Spectral theorem (Compact Self-Adjoint Operator)

Let V be a separable Hilbert space and let $C : V \rightarrow V$ be a compact, positive, self-adjoint operator. Then there exists an orthonormal basis $\{\Phi_n\}_{n \in \mathbb{N}}$ of V and a sequence of real numbers $(\lambda_n)_{n \in \mathbb{N}} \geq 0$ such that, for all $n \in \mathbb{N}$,

$$C\Phi_n = \lambda_n \Phi_n.$$

Moreover, $\lim_{n \rightarrow \infty} \lambda_n = 0$.

Proof

- Assume that there exists λ_n such that $\lim_{n \rightarrow \infty} \lambda_n \neq 0$.
Then there exists $\varepsilon > 0$ such that $|\lambda_{n_k}| \geq \varepsilon$.

Spectral theorem (Compact Self-Adjoint Operator)

Let V be a separable Hilbert space and let $C : V \rightarrow V$ be a compact, positive, self-adjoint operator. Then there exists an orthonormal basis $\{\Phi_n\}_{n \in \mathbb{N}}$ of V and a sequence of real numbers $(\lambda_n)_{n \in \mathbb{N}} \geq 0$ such that, for all $n \in \mathbb{N}$,

$$C\Phi_n = \lambda_n \Phi_n.$$

Moreover, $\lim_{n \rightarrow \infty} \lambda_n = 0$.

Proof

- Assume that there exists λ_n such that $\lim_{n \rightarrow \infty} \lambda_n \neq 0$.
Then there exists $\varepsilon > 0$ such that $|\lambda_{n_k}| \geq \varepsilon$.
- Let Φ_{n_k} be the corresponding orthonormal eigenvectors: $C\Phi_{n_k} = \lambda_{n_k} \Phi_{n_k}$.
 Φ_{n_k} bounded: $\|\Phi_{n_k}\| = 1$
 C compact $\Rightarrow (C\Phi_{n_k})$ admit a convergent subsequence

Snapshots POD

Spectral theorem (Compact Self-Adjoint Operator)

Let V be a separable Hilbert space and let $C : V \rightarrow V$ be a compact, positive, self-adjoint operator. Then there exists an orthonormal basis $\{\Phi_n\}_{n \in \mathbb{N}}$ of V and a sequence of real numbers $(\lambda_n)_{n \in \mathbb{N}} \geq 0$ such that, for all $n \in \mathbb{N}$,

$$C\Phi_n = \lambda_n \Phi_n.$$

Moreover, $\lim_{n \rightarrow \infty} \lambda_n = 0$.

Proof

- Assume that there exists λ_n such that $\lim_{n \rightarrow \infty} \lambda_n \neq 0$.
Then there exists $\varepsilon > 0$ such that $|\lambda_{n_k}| \geq \varepsilon$.
- Let Φ_{n_k} be the corresponding orthonormal eigenvectors: $C\Phi_{n_k} = \lambda_{n_k} \Phi_{n_k}$.
 Φ_{n_k} bounded: $\|\Phi_{n_k}\| = 1$
 C compact $\Rightarrow (C\Phi_{n_k})$ admit a convergent subsequence
- (Φ_n) orthonormal $\Rightarrow \|\Phi_n - \Phi_m\| = \sqrt{2}$ for $n \neq m$.
For the subsequence: $\|C\Phi_{n_{k_k'}} - C\Phi_{m_{k_k'}}\| = \|\lambda_{n_{k_k'}} \Phi_{n_{k_k'}} - \lambda_{m_{k_k'}} \Phi_{m_{k_k'}}\| \not\rightarrow 0$ if $|\lambda_{n_k}| \geq \varepsilon$.

This contradicts the compactness of C .

Snapshot POD

Spectral theorem (Compact Self-Adjoint Operator)

Let V be a separable Hilbert space and let $C : V \rightarrow V$ be a compact, positive, self-adjoint operator. Then there exists an orthonormal basis $\{\Phi_n\}_{n \in \mathbb{N}}$ of V and a sequence of real positive numbers $(\lambda_n)_{n \in \mathbb{N}}$ such that, for all $n \in \mathbb{N}$,

$$C\Phi_n = \lambda_n \Phi_n.$$

Moreover, $\lim_{n \rightarrow \infty} \lambda_n = 0$.

$$\boxed{\mathbb{E}[(u, \Phi)u] = \lambda \Phi, \text{ i. e. } C\Phi = \lambda \Phi}.$$

One can prove that C is a positive linear compact self-adjoint operator: one unique solution equal to the largest eigenvalue of the problem!

$$(C\Phi, \Phi) = \mathbb{E}[|(u, \Phi)|^2] = \lambda$$

$$\max_{\|\Phi_1\|=1} \mathbb{E}[|(u, \Phi_1)|^2] = \lambda_1$$

POD energy error

$$\lambda_1 \geq \lambda_2 \geq \dots \geq 0$$

$$\mathbb{E}[\|u - P_N u\|^2] = \sum_{k>N} \mathbb{E}[a_k^2] = \sum_{k>N} \lambda_k$$

Proof:

Since $\{\Phi_k\}$ is an orthonormal basis of V , $u(\mu) = \sum_{k=1}^{\infty} a_k(\mu) \Phi_k$.

$$\mathbb{E}[\|u - P_N u\|^2] = \mathbb{E}\left[\left\|\sum_{k=N}^{\infty} a_k \Phi_k\right\|^2\right] = \sum_{k>N} \mathbb{E}[a_k^2] = \sum_{k>N} \lambda_k$$

In fact, one can show that the more regularizing the operator C is, the faster its eigenvalues decay!

Link between regularity and eigenvalues

One can show that the more regularizing the operator C is, the faster its eigenvalues decay!

Exercise

Let $A : L^2(0, 1) \rightarrow L^2(0, 1)$ be defined by $(Ax)(t) = \int_0^t x(s) ds$.

1. Determine the adjoint operator A^* .
2. Define $C = A^*A$. Show that C is a compact, positive, and self-adjoint operator on $L^2(0, 1)$.
3. Let σ denote a singular value of A , and let $x \neq 0$ satisfy $Cx = A^*Ax = \sigma^2 x$.
 - (a) Show that A^*Ax is twice differentiable and compute $(A^*Ax)''(t)$.
 - (b) Deduce that x satisfies the differential equation $x(t) + \sigma^2 x''(t) = 0$.
4. Using the appropriate boundary conditions, determine the general form of the eigenfunctions $x(t)$.
5. Deduce the explicit expression of the singular values σ_n of A and determine their asymptotic behaviour as $n \rightarrow \infty$.

Link between regularity and eigenvalues

One can show that the more regularizing the operator C is, the faster its eigenvalues decay!

Exercise: Transport equation

Let $T_h : L^2(0, 1) \rightarrow L^2(0, 1)$ be the transport operator defined by $(T_h x)(t) = x(t - h)$, with periodic boundary conditions on $(0, 1)$ and a fixed shift $h \in (0, 1)$.

1. Show that T_h is a bounded linear operator on $L^2(0, 1)$ and that $\|T_h x\|_{L^2} = \|x\|_{L^2}$.
2. Compute the adjoint T_h^* and show that $T_h^* = T_{-h}$.
3. Show that $T_h^* T_h = I$, where I is the identity operator.
4. Deduce that the singular values of T_h satisfy $\sigma_n = 1$ for all n .
5. Conclude that T_h is not compact and does not regularize.

Link between regularity and eigenvalues

Thus $\sigma = 1$ No decrease! **No efficient basis functions for transport and advection-dominated regime**

- No regularity gain
- No compacity
- No decrease in POD eigenvalues
- No efficient basis functions

What can we do in that case?

- shifted POD
- transport maps
- nonlinear reduced bases
- POD + autoencoders

Link between regularity and eigenvalues

Thus $\sigma = 1$ No decrease! **No efficient basis functions for transport and advection-dominated regime**

- No regularity gain

- No compacity

- No decrease in POD eigenvalues

- No efficient basis functions

What can we do in that case?

- shifted POD

- transport maps

- nonlinear reduced bases

- POD + autoencoders

Link between regularity and eigenvalues

Thus $\sigma = 1$ No decrease! **No efficient basis functions for transport and advection-dominated regime**

- No regularity gain

- No compacity

- No decrease in POD eigenvalues

- No efficient basis functions

What can we do in that case?

- shifted POD

- transport maps

- nonlinear reduced bases

- POD + autoencoders

Link between regularity and eigenvalues

Thus $\sigma = 1$ No decrease!

No regularity gain

No compacity

No decrease in POD eigenvalues

No efficient basis functions

What can we do in that case?

Transport:
$$\begin{cases} \text{shifted POD: } u(x, t) = \sum_k \sum_n a_{k,n}(t) \Phi_{k,n}(x - s_k(t)) \\ \text{transport maps: } u(x, t) = \sum_n a_n(t) \Phi_n(T_t(x)) \end{cases}$$

Nonlinear dynamics:
$$\begin{cases} \text{nonlinear reduced bases: } = F(u) \leftrightarrow \dot{a} = Aa + H(a \otimes a) \\ \text{POD+autoencoders } ^1(t, \mu) \rightarrow NN \rightarrow a(t, \mu) \rightarrow u \simeq Va \end{cases}$$

¹POD_DL_ROM: <https://reducedbasis.github.io/docs/poddlrom/>

Sheep model

Let's get back to our sheep

linear second-order parameter dependent problem

$$\begin{cases} -\nabla \cdot (a(\mu) \nabla u) = f(\mu) & \text{dans } \Omega, \\ u = 0 & \text{sur } \partial\Omega. \end{cases}$$

$u(\mathbf{x}; \mu) \in V$: Unknowns,

$\mu \in \mathcal{G}$: Variable parameter,

How do we construct the reduced basis with the POD in practice?

Snapshot POD

$$\boxed{\mathbb{E}[(u, \Phi)u] = \lambda\Phi, \text{ i. e. } C\Phi = \lambda\Phi}.$$

$\Leftrightarrow \int_{\Omega} R(\mathbf{x}, \mathbf{x}') \Phi(\mathbf{x}') d\mathbf{x}' = \lambda\Phi(\mathbf{x})$, with $R(\mathbf{x}, \mathbf{x}') = \mathbb{E}[u(\mathbf{x})u(\mathbf{x}')]$, which is the spatial continuous covariance operator.

Snapshot POD

The space of the modes is contained into the snapshots' span.

$$R(\mathbf{x}, \mathbf{x}') = \mathbb{E}[u(\mathbf{x})u(\mathbf{x}')] \simeq \frac{1}{N_{train}} \sum_{k=1}^{N_{train}} u(\mathbf{x}, \boldsymbol{\mu}_k)u(\mathbf{x}', \boldsymbol{\mu}_k).$$

$$\text{so } \int_{\Omega} R(\mathbf{x}, \mathbf{x}') \Phi(\mathbf{x}') d\mathbf{x}' \simeq \frac{1}{N_{train}} \sum_{k=1}^{N_{train}} u(\mathbf{x}, \boldsymbol{\mu}_k) \underbrace{\int_{\Omega} u(\mathbf{x}', \boldsymbol{\mu}_k) \Phi(\mathbf{x}') d\mathbf{x}'}_{a_k = (u(\boldsymbol{\mu}_k), \Phi)} = \lambda \Phi(\mathbf{x}), \quad (\text{R})$$

$$\text{Therefore } \Phi(\mathbf{x}) = \sum_{k=1}^{N_{train}} \alpha_k u(\mathbf{x}, \boldsymbol{\mu}_k).$$

$$a_k = (u(\boldsymbol{\mu}_k), \Phi) = (u(\boldsymbol{\mu}_k), \sum_{j=1}^{N_{train}} \alpha_j u(\boldsymbol{\mu}_j)) = \sum_{j=1}^{N_{train}} \alpha_j \underbrace{(u(\boldsymbol{\mu}_k), u(\boldsymbol{\mu}_j))}_{\mathbf{C}_{k,j}}$$

$$(R) \Leftrightarrow \frac{1}{N_{train}} \sum_{k=1}^{N_{train}} u(\mathbf{x}, \boldsymbol{\mu}_k) \sum_{j=1}^{N_{train}} \alpha_j \mathbf{C}_{k,j} = \lambda \sum_{k=1}^{N_{train}} \alpha_k u(\mathbf{x}, \boldsymbol{\mu}_k).$$

Snapshot POD

The space of the modes is contained into the snapshots' span.

$$R(\mathbf{x}, \mathbf{x}') = \mathbb{E}[u(\mathbf{x})u(\mathbf{x}')] \simeq \frac{1}{N_{train}} \sum_{k=1}^{N_{train}} u(\mathbf{x}, \boldsymbol{\mu}_k)u(\mathbf{x}', \boldsymbol{\mu}_k).$$

$$\text{so } \int_{\Omega} R(\mathbf{x}, \mathbf{x}') \Phi(\mathbf{x}') d\mathbf{x}' \simeq \frac{1}{N_{train}} \sum_{k=1}^{N_{train}} u(\mathbf{x}, \boldsymbol{\mu}_k) \underbrace{\int_{\Omega} u(\mathbf{x}', \boldsymbol{\mu}_k) \Phi(\mathbf{x}') d\mathbf{x}'}_{\mathbf{a}_k = (u(\boldsymbol{\mu}_k), \Phi)} = \lambda \Phi(\mathbf{x}), \quad (\text{R})$$

$$\text{Therefore } \Phi(\mathbf{x}) = \sum_{k=1}^{N_{train}} \alpha_k u(\mathbf{x}, \boldsymbol{\mu}_k).$$

$$\mathbf{a}_k = (u(\boldsymbol{\mu}_k), \Phi) = (u(\boldsymbol{\mu}_k), \sum_{j=1}^{N_{train}} \alpha_j u(\boldsymbol{\mu}_j)) = \sum_{j=1}^{N_{train}} \alpha_j \underbrace{(u(\boldsymbol{\mu}_k), u(\boldsymbol{\mu}_j))}_{\mathbf{C}_{k,j}}$$

$$(R) \Leftrightarrow \frac{1}{N_{train}} \sum_{k=1}^{N_{train}} u(\mathbf{x}, \boldsymbol{\mu}_k) \sum_{j=1}^{N_{train}} \alpha_j \mathbf{C}_{k,j} = \lambda \sum_{k=1}^{N_{train}} \alpha_k u(\mathbf{x}, \boldsymbol{\mu}_k).$$

Snapshot POD

$$(R) \Leftrightarrow \frac{1}{N_{train}} \sum_{k=1}^{N_{train}} u(\mathbf{x}, \boldsymbol{\mu}_k) \sum_{j=1}^{N_{train}} \alpha_j \mathbf{C}_{k,j} = \lambda \sum_{k=1}^N \alpha_k u(\mathbf{x}, \boldsymbol{\mu}_k)$$

gives for one $k = i$

$$\frac{1}{N_{train}} \sum_{j=1}^{N_{train}} \mathbf{C}_{i,j} \alpha_j = \lambda \alpha_i.$$

Thus, $\mathbf{C}\alpha = N_{train}\lambda\alpha = \lambda'\alpha$: the eigenvalues of the spatial covariance operator or the snapshot correlation matrix are the same (up to a factor N_{train})!

Discretization

$$\mathbf{C}\alpha = \lambda' \alpha \quad (C)$$

We impose (α_n) orthonormal.

Let $S = [u_1, \dots, u_{N_{train}}] \in \mathbb{R}^{\mathcal{N} \times N_{train}}$. Then $\Phi = S\alpha$, and

$$\|\Phi\|^2 = (S\alpha, S\alpha) = \alpha^T S^T S \alpha$$

But (C) implies that $\|\Phi\|^2 = \lambda' \alpha^T \alpha = \lambda'$

$$\text{Hence } \tilde{\Phi}(\mathbf{x}) = \frac{1}{\sqrt{\lambda'}} \sum_{k=1}^{N_{train}} \alpha_k u(\mathbf{x}, \boldsymbol{\mu}_k) \text{ (after normalization)}$$

Let us denote in the following slides $\Phi = \tilde{\Phi}$ and $\lambda = \lambda'$.

Discretization: Snapshot POD algorithm

- 1: Collect snapshots $u(\cdot, \mu_i)$, $i = 1, \dots, N_{train}$
- 2: Assemble snapshot matrix S
- 3: Compute correlation matrix $C = S^T S$ or $C = S^T M S$ (M = mass matrix)
- 4: Solve $C\alpha_i = \lambda_i \alpha_i$, $i = 1, \dots, N_{train}$
- 5: Sort the eigenvalues
- 6: Retrieve first N eigenvalues/eigenvectors
- 7: Build POD modes $\Phi_i = \frac{1}{\sqrt{\lambda_i}} S \alpha_i$, $i = 1, \dots, N$

The space of the modes is contained into the snapshots' span: $N \leq N_{train}$
How do we choose N ? $\lambda_1 \geq \lambda_2 \geq \dots \geq 0$

$$\mathbb{E}[\|u - P_N u\|^2] = \sum_{k>N} \mathbb{E}[a_k^2] = \sum_{k>N} \lambda_k$$

Relativ Information Content (RIC) must be close to 0:

$$1 - \sum_{k=1}^N \lambda_k / \sum_{k=1}^{N_{train}} \lambda_k$$

Notations

Mesh (\mathcal{T}) size: h

Sets of edges: $\mathcal{F}, \mathcal{F}_{ext}, \mathcal{F}_{int}, \mathcal{F}_K$

Normals: $\mathbf{n}_K, \mathbf{n}_{K\sigma}, \mathbf{n}_{KL}$

Volumes / Measures/Distances: $|K|, |\sigma|, d_{K\sigma}, d_{L\sigma}, d_{KL}$

Finite Volume Methods

Based on the conservation form of the PDE

Integrate the balance equation on each cell κ and apply Stokes' formula:

$$\sum_{\text{edges of } \kappa} \text{outward flux} = \int_{\kappa} \text{source.}$$

Approximate each flux and write the discrete balance equation obtained.

Notations

Mesh (\mathcal{T}) size: h

Sets of edges: $\mathcal{F}, \mathcal{F}_{ext}, \mathcal{F}_{int}, \mathcal{F}_K$

Normals: $\mathbf{n}_K, \mathbf{n}_{K\sigma}, \mathbf{n}_{KL}$

Volumes / Measures/Distances: $|K|, |\sigma|, d_{K\sigma}, d_{L\sigma}, d_{KL}$

Finite Volume Methods

Based on the conservation form of the PDE \rightarrow Flux: total outward flux = the total internal source

Integrate the balance equation on each cell κ and apply Stokes' formula:

$$\sum_{\text{edges of } \kappa} \text{outward flux} = \int_{\kappa} \text{source.}$$

Approximate each flux and write the discrete balance equation obtained.

Notations

Mesh (\mathcal{T}) size: h

Sets of edges: $\mathcal{F}, \mathcal{F}_{ext}, \mathcal{F}_{int}, \mathcal{F}_K$

Normals: $\mathbf{n}_K, \mathbf{n}_{K\sigma}, \mathbf{n}_{KL}$

Volumes / Measures/Distances: $|K|, |\sigma|, d_{K\sigma}, d_{L\sigma}, d_{KL}$

Finite Volume Methods

Based on the conservation form of the PDE \rightarrow Flux: total outward flux = the total internal source

Integrate the equation on each cell κ and apply Stokes' formula:

$$\int_K f(\mathbf{x}) \, d(\mathbf{x}) = - \int_K \nabla \cdot (a(\mu) \nabla u) = \sum_{\sigma \in \mathcal{F}_K} \underbrace{- \int_{\sigma} a(\mu) \nabla u(\mathbf{x}) \cdot \mathbf{n}_{K,\sigma} \, d_{\gamma}(\mathbf{x})}_{\bar{F}_{K,\sigma}}$$

Approximate each flux and write the discrete balance equation obtained.

TP: VF5-TPFA

Notations

Mesh (\mathcal{T}) size: h

Sets of edges: $\mathcal{F}, \mathcal{F}_{ext}, \mathcal{F}_{int}, \mathcal{F}_K$

Normals: $\mathbf{n}_K, \mathbf{n}_{K\sigma}, \mathbf{n}_{KL}$

Volumes / Measures/Distances: $|K|, |\sigma|, d_{K\sigma}, d_{L\sigma}, d_{KL}$

Flux balance:

$$\sum_{\sigma \in \mathcal{F}_K} \bar{F}_{K,\sigma} = \int_K f(\mathbf{x}) \, d(\mathbf{x}).$$

Flux conservativity:

$$\bar{F}_{K,\sigma} + \bar{F}_{L,\sigma} = 0 \text{ if } \sigma = K|L.$$

We want to find $u_h = (u_K)_{K \in \mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$

Define $u_h \rightarrow F_{K,\sigma}(u_h)$ that approximates the flux and find $u_h \in \mathbb{R}^{\mathcal{T}}$ such that $|K|f_K = \sum_{\sigma \in \mathcal{F}_K} F_{K,\sigma} \forall K \in \mathcal{T}$.

We want to find $u_h = (u_K)_{K \in \mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$

Define $u_h \rightarrow F_{K,\sigma}(u_h)$ that approximates the flux and find $u \in \mathbb{R}^{\mathcal{T}}$ such that

$$|K|f_K = \sum_{\sigma \in \mathcal{F}_K} F_{K,\sigma}, \quad \forall K \in \mathcal{T}$$

TP: VF5-TPFA

We want to find $u_h = (u_K)_{K \in \mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$

Define $u_h \rightarrow F_{K,\sigma}(u_h)$ that approximates the flux and find $u \in \mathbb{R}^{\mathcal{T}}$ such that

$$|K|f_K = \sum_{\sigma \in \mathcal{F}_K} F_{K,\sigma}, \quad \forall K \in \mathcal{T}$$

Case of an interior edge

$$\sigma \in \mathcal{E}_{int}, \quad \sigma = K|L$$

$$x_L - x_K = d_{KL} \mathbf{n}_{KL}.$$

If $x \in \sigma$,

$$\begin{aligned} (\nabla u(x)) \cdot \mathbf{n}_{KL} &= \frac{u(x_L) - u(x_K)}{d_{KL}} + \mathcal{O}(h). \\ \implies \bar{F}_{K,\sigma} &= \underbrace{-\overline{A(\mu)}|\sigma| \frac{u(x_L) - u(x_K)}{d_{KL}}}_{F_{K,\sigma}(u_h)} + \mathcal{O}(h^2) \end{aligned}$$

where \overline{A} is the harmonic average: $\overline{A} = \frac{A(x_L)A(x_K)d_{KL}}{A(x_L)d_{K,\sigma} + A(x_K)d_{L,\sigma}}$

TP: VF5-TPFA

We want to find $u_h = (u_K)_{K \in \mathcal{T}} \in \mathbb{R}^{\mathcal{T}}$

Define $u_h \rightarrow F_{K,\sigma}(u_h)$ that approximates the flux and find $u \in \mathbb{R}^{\mathcal{T}}$ such that

$$|K|f_K = \sum_{\sigma \in \mathcal{F}_K} F_{K,\sigma}, \quad \forall K \in \mathcal{T}$$

Case of a boundary edge

$$\sigma \in \mathcal{E}_{\text{ext}}$$

$$x_\sigma - x_K = d_{K\sigma} \mathbf{n}_{K\sigma}.$$

$$(\nabla u(x)) \cdot \mathbf{n}_{K\sigma} \approx \frac{u(x_\sigma) - u(x_K)}{d_{K\sigma}} = \frac{0 - u(x_K)}{d_{K\sigma}} \quad (\text{boundary condition})$$

$$\implies \overline{F}_{K,\sigma} = -|\sigma| A_K \underbrace{\frac{-u(x_K)}{d_{K\sigma}}}_{F_{K,\sigma}(u_h)} + \mathcal{O}(h^2)$$

TP: TPFA (Two-Point Flux Approximation)

Find $u_h = (u_K)_{K \in \mathcal{T}_h}$ such that for all K in \mathcal{T}_h :

$$\sum_{\sigma \in F_K \cap F_{int}} \tau_\sigma (u_K - u_L) + \sum_{\sigma \in F_K \cap F_{ext}} \tau_\sigma u_K = \int_K f(x) dx$$

with Dirichlet boundary $u = 0$ on $\partial\Omega$, where $\tau_\sigma = |\sigma| \frac{A_K A_L}{A_L d_{K,\sigma} + A_K d_{L,\sigma}}$ on F_{int}
and $\tau_\sigma = |\sigma| \frac{A_K}{d_{K,\sigma}}$ on F_{ext}

We take here $\Omega = [0, 1] \times [0, 1]$ with a cartesian mesh.

$$A(x, y; \mu) = 2\mu_1 + \mu_2 \sin(x + y) \cos(xy)$$

$$f(x, y; \mu) = \mu_3(1 - y) + \mu_4 x (1 - x)$$

POD-based Reduced Order Model with TPFA

- ◊ Complete the function `assemble_tpfa`. The TPFA solver must return the cell centers, the matrix M , and the vector b such that $Mu = b$.
- ◊ Generate a training dataset:
 - Use $N_{train} = 10$ snapshots and sample random parameters μ with components in $[0, 1]$.
 - Solve the full-order TPFA system for each sampled parameter.
 - Store the resulting solutions as a snapshots list.
- ◊ Using the discrete L^2 inner product $(u, v)_{L^2} = \sum_K |K| u_K v_K$,
 - Assemble the snapshot correlation matrix.
 - Compute the reduced basis with a Proper Orthogonal Decomposition (POD).
 - Verify that the reduced basis is orthonormal with respect to $(\cdot, \cdot)_{L^2}$.
- ◊ Determine how many modes N are sufficient using the Relative Information Content.
- ◊ Write a function that computes the ROM projection coefficients of a given full-order solution u .
- ◊ Consider a new parameter μ . Write a function that computes the reduced-order approximation of the solution without computing the HF solution.
- ◊ Show that the obtained reduced system has the form $\tilde{M}a = \tilde{b}$, where \tilde{M} is of size $N \times N$ and \tilde{b} is of size N .

POD-based Reduced Order Model with TPFA

- ◊ Test the reduced model for $\mu = (0.6, 0.5, 0.2, 0.8)$.
- ◊ Compare the errors $\|u_{\text{ref}} - u\|_{L^2}$ and $\|u_{\text{ref}} - u_N\|_{L^2}$, where u_{ref} is a refined solution.

Unit square with $N_x=5$, $N_y=2$ ($dx=0.2$, $dy=0.5$)

Cell-center indexing: (i,j)

